Skip to main content

Native Coronary Artery and Bypass Graft Atherosclerosis

  • Reference work entry
  • First Online:
PanVascular Medicine

Abstract

Patients with acute coronary syndrome (ACS) classically present with unstable angina, acute myocardial infarction, or sudden coronary death. In approximately 50–60 % of sudden coronary death cases, the culprit lesion exhibits an acute coronary thrombus, whereas the remainder of these cases includes stable coronary plaques with greater than 75 % cross-sectional area luminal narrowing. The most common cause of coronary thrombus is plaque rupture, which is characterized by a large necrotic core and a disrupted cap that allows blood to come in contact with highly thrombogenic necrotic core inducing luminal thrombosis. It is now increasingly recognized that the preexisting thin-cap fibroatheroma (TCFA) (vulnerable plaque) characterized by a necrotic core with an overlying thin fibrous cap (≤65μm) is observed in approximately 50 % of patients dying suddenly with thrombotic occlusion and occurs often in hemodynamically insignificant lesions. The onset of symptoms and life-threatening complications therefore depends not only on the severity of narrowing in stable chronic coronary artery disease but also on the underlying plaque morphology. Intraplaque hemorrhage is a major contributor for the enlargement of the necrotic core. Hemorrhage is thought to occur from leaky vasa vasorum that invade the intima from the adventitia as the intima enlarges. The atherosclerotic plaque progresses from pathologic intimal thickening to a fibroatheroma likely as a result of macrophage infiltration into the lipid pool. The conversion of the lipid pool to necrotic core occurs as a result of macrophage infiltration, which releases matrix metalloproteinase (MMPs) that destroy proteoglycans. The necrotic core is also constituted of apoptotic macrophages and smooth muscle cells that constitute an acellular component of necrotic core. The fibroatheroma has a thick fibrous cap that pinches overtime through macrophage infiltration, MMP release, and apoptotic death of smooth muscle cells converting the fibroatheroma into a TCFA.

Other causes of thrombosis include plaque erosion, which occurs primarily in young patients (<50 years) and represents the majority of acute coronary thrombi in premenopausal women. The underlying lesion morphology in plaque erosion shows PIT or a thick cap fibroatheroma. Calcified nodule is the least frequent cause of thrombosis, which occurs in older individuals with heavily calcified and tortuous arteries.

Coronary artery bypass grafting (CABG) is the preferred therapeutic option for complex multivessel coronary artery disease and is associated with reduced morbidity and mortality compared to percutaneous interventional approaches. The internal mammary artery (IMA) grafts have been associated with long-term patency and improved survival as compared to saphenous vein grafts (SVGs). However, the IMA is predominantly used to bypass the LAD, while in the other beds saphenous vein graft is frequently used. The latter is associated with accelerated atherosclerosis development and has a very high rate of failure.

Structurally, the IMA endothelial layer shows fewer fenestrations, lower intercellular junction permeability, greater antithrombotic molecules such as heparin sulfate and tissue plasminogen activator, and higher endothelial nitric oxide production, which are some of the unique ways that make the IMA impervious to the transfer of lipoproteins. This basic understanding is crucial to championing the use of IMA as the first line of defense for the treatment of coronary artery disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Endoplasmic reticulum (ER):

Organelle of eukaryotic cells that forms an interconnected network of flattened, membrane-enclosed sacs or tubes termed cisternae. ER fulfills multiple cellular functions including the transport of synthesized proteins from vesicles to the Golgi apparatus.

Lp(a):

Lipoprotein(a) [Lp(a)] contains an LDL-like particle and the specific apolipoprotein(a) [apo(a)], which is covalently bound to the apolipoprotein B of the LDL like particle; Lp(a) is structurally related to plasminogen and tissue plasminogen activator and represents an independent risk factor for the development and progression of atherosclerosis.

Lipoprotein-associated phospholipase A2 (Lp-PLA2):

Enzyme that catalyzes the degradation of platelet activating factor (PAF) to inactive products by hydrolysis of the acetyl group at the sn-2 position, producing the biologically inactive products LYSO-PAF and acetate; Lp-PLA2 represents a risk factor for atherosclerosis.

Rosuvastatin:

Blocker of HMG-CoA-reductase, a catalyst of the reaction of 3-hydroxy-3-methylglutaryl-Coenzyme A (HMG-CoA) to mevalonate, a rate limiting step of cholesterol synthesis in the liver.

CABG:

Coronary artery bypass grafting

CAD:

Coronary artery disease

CTO:

Chronic total occlusion

HPR:

Healed plaque rupture

IMA:

Internal mammary artery

LAD:

Left anterior descending coronary artery

PIT:

Pathologic intimal thickening

SMC:

Smooth muscle cell

SVG:

Saphenous vein graft

TCFA:

Thin-cap fibroatheroma

References

  • Accad M, Smith SJ, Newland DL et al (2000) Massive xanthomatosis and altered composition of atherosclerotic lesions in hyperlipidemic mice lacking acyl CoA: cholesterol acyltransferase 1. J Clin Invest 105:711–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aikawa M, Rabkin E, Okada Y et al (1998) Lipid lowering by diet reduces matrix metalloproteinase activity and increases collagen content of rabbit atheroma: a potential mechanism of lesion stabilization. Circulation 97:2433–2444

    Article  CAS  PubMed  Google Scholar 

  • Ait-Oufella H, Kinugawa K, Zoll J et al (2007) Lactadherin deficiency leads to apoptotic cell accumulation and accelerated atherosclerosis in mice. Circulation 115:2168–2177

    Article  CAS  PubMed  Google Scholar 

  • Ambrose JA, Winters SL, Stern A et al (1985) Angiographic morphology and the pathogenesis of unstable angina pectoris. J Am Coll Cardiol 5:609–616

    Article  CAS  PubMed  Google Scholar 

  • Aprahamian T, Rifkin I, Bonegio R et al (2004) Impaired clearance of apoptotic cells promotes synergy between atherogenesis and autoimmune disease. J Exp Med 199:1121–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arbustini E (2007) Total erythrocyte membrane cholesterol: an innocent new marker or an active player in acute coronary syndromes? J Am Coll Cardiol 49:2090–2092

    Article  CAS  PubMed  Google Scholar 

  • Arbustini E, Morbini P, D'Armini AM et al (2002) Plaque composition in plexogenic and thromboembolic pulmonary hypertension: the critical role of thrombotic material in pultaceous core formation. Heart (British Cardiac Society) 88:177–182

    Article  CAS  Google Scholar 

  • Atkinson JB, Forman MB, Vaughn WK, Robinowitz M, McAllister HA, Virmani R (1985) Morphologic changes in long-term saphenous vein bypass grafts. Chest 88:341–348

    Article  CAS  PubMed  Google Scholar 

  • Barner HB (2002) Remodeling of arterial conduits in coronary grafting. Ann Thorac Surg 73:1341–1345

    Article  PubMed  Google Scholar 

  • Bashour TT, Hanna ES, Mason DT (1986) Myocardial revascularization with internal mammary artery bypass: an emerging treatment of choice. Am Heart J 111:143–151

    Article  CAS  PubMed  Google Scholar 

  • Bennett MR, Evan GI, Schwartz SM (1995) Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J Clin Invest 95:2266–2274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boisvert WA, Rose DM, Boullier A et al (2006) Leukocyte transglutaminase 2 expression limits atherosclerotic lesion size. Arterioscler Thromb Vasc Biol 26:563–569

    Article  CAS  PubMed  Google Scholar 

  • Bourassa MG, Fisher LD, Campeau L, Gillespie MJ, McConney M, Lesperance J (1985) Long-term fate of bypass grafts: the Coronary Artery Surgery Study (CASS) and Montreal Heart Institute experiences. Circulation 72:V71–V78

    CAS  PubMed  Google Scholar 

  • Boyle JJ, Harrington HA, Piper E et al (2009) Coronary intraplaque hemorrhage evokes a novel atheroprotective macrophage phenotype. Am J Pathol 174:1097–1108

    Article  PubMed  PubMed Central  Google Scholar 

  • Budoff MJ, Gul KM (2008) Expert review on coronary calcium. Vasc Health Risk Manag 4:315–324

    Article  PubMed  PubMed Central  Google Scholar 

  • Burfeind WR Jr, Glower DD, Wechsler AS et al (2004) Single versus multiple internal mammary artery grafting for coronary artery bypass: 15-year follow-up of a clinical practice trial. Circulation 110:II27–II35

    Article  PubMed  Google Scholar 

  • Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R (1997) Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 336:1276–1282

    Article  CAS  PubMed  Google Scholar 

  • Burke AP, Farb A, Malcom GT, Liang Y, Smialek J, Virmani R (1998) Effect of risk factors on the mechanism of acute thrombosis and sudden coronary death in women. Circulation 97:2110–2116

    Article  CAS  PubMed  Google Scholar 

  • Burke AP, Taylor A, Farb A, Malcom GT, Virmani R (2000) Coronary calcification: insights from sudden coronary death victims. Z Kardiol 89(Suppl 2):49–53

    Article  PubMed  Google Scholar 

  • Burke AP, Farb A, Malcom G, Virmani R (2001a) Effect of menopause on plaque morphologic characteristics in coronary atherosclerosis. Am Heart J 141:S58–S62

    Article  CAS  PubMed  Google Scholar 

  • Burke AP, Weber DK, Kolodgie FD, Farb A, Taylor AJ, Virmani R (2001b) Pathophysiology of calcium deposition in coronary arteries. Herz 26:239–244

    Article  CAS  PubMed  Google Scholar 

  • Burke AP, Kolodgie FD, Farb A et al (2001c) Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation 103:934–940

    Article  CAS  PubMed  Google Scholar 

  • Burke AP, Virmani R, Galis Z, Haudenschild CC, Muller JE (2003) 34th Bethesda Conference: task force #2–What is the pathologic basis for new atherosclerosis imaging techniques? J Am Coll Cardiol 41:1874–1886

    Article  PubMed  Google Scholar 

  • Burke AP, Kolodgie FD, Farb A, Virmani R (2007) Pathogenesis and significance of calcification in coronary atherosclerosis. In: Virmani R, Narula J, Leon MB, Willerson JT (eds) The vulnerable atherosclerotic plaque: strategies for diagnosis and management, 1st edn. Wiley, Malden, Massachusetts, USA, pp 77–94

    Google Scholar 

  • Butany JW, David TE, Ojha M (1998) Histological and morphometric analyses of early and late aortocoronary vein grafts and distal anastomoses. Can J Cardiol 14:671–677

    CAS  PubMed  Google Scholar 

  • Cameron A, Davis KB, Green G, Schaff HV (1996) Coronary bypass surgery with internal-thoracic-artery grafts–effects on survival over a 15-year period. N Engl J Med 334:216–219

    Article  CAS  PubMed  Google Scholar 

  • Campeau L, Enjalbert M, Lesperance J et al (1984) The relation of risk factors to the development of atherosclerosis in saphenous-vein bypass grafts and the progression of disease in the native circulation. A study 10 years after aortocoronary bypass surgery. N Engl J Med 311:1329–1332

    Article  CAS  PubMed  Google Scholar 

  • Campeau L, Knatterud G, Domanski D et al (1997) The effect of aggressive lowering of low-density lipoprotein cholesterol levels and low-dose anticoagulation on obstructive changes in saphenous-vein coronary-artery bypass grafts. The post coronary artery bypass graft trial investigators. N Engl J Med 336:153–162

    Article  CAS  Google Scholar 

  • Canham PB, Finlay HM, Boughner DR (1997) Contrasting structure of the saphenous vein and internal mammary artery used as coronary bypass vessels. Cardiovasc Res 34:557–567

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936

    Article  CAS  PubMed  Google Scholar 

  • Chang MK, Binder CJ, Miller YI et al (2004) Apoptotic cells with oxidation-specific epitopes are immunogenic and proinflammatory. J Exp Med 200:1359–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke JA (1964) An X-ray microscopic study of the vasa vasorum of normal human coronary arteries. J Anat 98:539–543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Damgaard S, Steinbruchel DA, Kjaergard HK (2005) An update on internal mammary artery grafting for coronary artery disease. Curr Opin Cardiol 20:521–524

    Article  PubMed  Google Scholar 

  • Darbonne WC, Rice GC, Mohler MA et al (1991) Red blood cells are a sink for interleukin 8, a leukocyte chemotaxin. J Clin Invest 88:1362–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies MJ (1995) Stability and instability: two faces of coronary atherosclerosis. The Paul Dudley White Lecture 1995. Circulation 94:2013–2020

    Article  Google Scholar 

  • Davies MJ, Thomas A (1984) Thrombosis and acute coronary-artery lesions in sudden cardiac ischemic death. N Engl J Med 310:1137–1140

    Article  CAS  PubMed  Google Scholar 

  • Davis GE (1992) The Mac-1 and p150,95 beta 2 integrins bind denatured proteins to mediate leukocyte cell-substrate adhesion. Exp Cell Res 200:242–252

    Article  CAS  PubMed  Google Scholar 

  • Dove DE, Su YR, Zhang W et al (2005) ACAT1 deficiency disrupts cholesterol efflux and alters cellular morphology in macrophages. Arterioscler Thromb Vasc Biol 25:128–134

    Article  CAS  PubMed  Google Scholar 

  • Falk E, Shah PK, Fuster V (1995) Coronary plaque disruption. Circulation 92:657–671

    Article  CAS  PubMed  Google Scholar 

  • Falk E, Nakano M, Bentzon JF, Finn AV, Virmani R (2013) Update on acute coronary syndromes: the pathologists’ view. Eur Heart J 34:719–728

    Article  CAS  PubMed  Google Scholar 

  • Fan J, Watanabe T (2003) Inflammatory reactions in the pathogenesis of atherosclerosis. J Atheroscler Thromb 10:63–71

    Article  CAS  PubMed  Google Scholar 

  • Farb A, Burke AP, Tang AL et al (1996) Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation 93:1354–1363

    Article  CAS  PubMed  Google Scholar 

  • Felton CV, Crook D, Davies MJ, Oliver MF (1997) Relation of plaque lipid composition and morphology to the stability of human aortic plaques. Arterioscler Thromb Vasc Biol 17:1337–1345

    Article  CAS  PubMed  Google Scholar 

  • Feng B, Yao PM, Li Y et al (2003) The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol 5:781–792

    Article  CAS  PubMed  Google Scholar 

  • Ferrante G, Nakano M, Prati F et al (2010) High levels of systemic myeloperoxidase are associated with coronary plaque erosion in patients with acute coronary syndromes: a clinicopathological study. Circulation 122:2505–2513

    Article  CAS  PubMed  Google Scholar 

  • Foglieni C, Maisano F, Dreas L et al (2008) Mild inflammatory activation of mammary arteries in patients with acute coronary syndromes. Am J Physiol Heart Circ Physiol 294:H2831–H2837

    Article  CAS  PubMed  Google Scholar 

  • Galili O, Herrmann J, Woodrum J, Sattler KJ, Lerman LO, Lerman A (2004) Adventitial vasa vasorum heterogeneity among different vascular beds. J Vasc Surg 40:529–535

    Article  PubMed  Google Scholar 

  • Galili O, Sattler KJ, Herrmann J et al (2005) Experimental hypercholesterolemia differentially affects adventitial vasa vasorum and vessel structure of the left internal thoracic and coronary arteries. J Thorac Cardiovasc Surg 129:767–772

    Article  PubMed  Google Scholar 

  • Gijsen FJ, Wentzel JJ, Thury A et al (2008) Strain distribution over plaques in human coronary arteries relates to shear stress. Am J Physiol Heart Circ Physiol 295:H1608–H1614

    Article  CAS  PubMed  Google Scholar 

  • Glaser R, Selzer F, Faxon DP et al (2005) Clinical progression of incidental, asymptomatic lesions discovered during culprit vessel coronary intervention. Circulation 111:143–149

    Article  PubMed  Google Scholar 

  • Goldman S, Zadina K, Moritz T et al (2004) Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: results from a Department of Veterans Affairs Cooperative Study. J Am Coll Cardiol 44:2149–2156

    Article  PubMed  Google Scholar 

  • Graversen JH, Madsen M, Moestrup SK (2002) CD163: a signal receptor scavenging haptoglobin-hemoglobin complexes from plasma. Int J Biochem Cell Biol 34:309–314

    Article  CAS  PubMed  Google Scholar 

  • Guyton JR (2001) Phospholipid hydrolytic enzymes in a 'cesspool' of arterial intimal lipoproteins: a mechanism for atherogenic lipid accumulation. Arterioscler Thromb Vasc Biol 21:884–886

    Article  CAS  PubMed  Google Scholar 

  • Heistad DD, Marcus ML, Larsen GE, Armstrong ML (1981) Role of vasa vasorum in nourishment of the aortic wall. Am J Physiol 240:H781–H787

    CAS  PubMed  Google Scholar 

  • Hildebrandt HA, Gossl M, Mannheim D et al (2008) Differential distribution of vasa vasorum in different vascular beds in humans. Atherosclerosis 199:47–54

    Article  CAS  PubMed  Google Scholar 

  • Hoff HF, Bradley WA, Heideman CL, Gaubatz JW, Karagas MD, Gotto AM Jr (1979) Characterization of low density lipoprotein-like particle in the human aorta from grossly normal and atherosclerotic regions. Biochim Biophys Acta 573:361–374

    Article  CAS  PubMed  Google Scholar 

  • Hossain GS, van Thienen JV, Werstuck GH et al (2003) TDAG51 is induced by homocysteine, promotes detachment-mediated programmed cell death, and contributes to the development of atherosclerosis in hyperhomocysteinemia. J Biol Chem 278:30317–30327

    Article  CAS  PubMed  Google Scholar 

  • Ho-Tin-Noe B, Goerge T, Cifuni SM, Duerschmied D, Wagner DD (2008) Platelet granule secretion continuously prevents intratumor hemorrhage. Cancer Res 68:6851–6858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25

    Article  CAS  PubMed  Google Scholar 

  • Iakoubova OA, Sabatine MS, Rowland CM et al (2008a) Polymorphism in KIF6 gene and benefit from statins after acute coronary syndromes: results from the PROVE IT-TIMI 22 study. J Am Coll Cardiol 51:449–455

    Article  CAS  PubMed  Google Scholar 

  • Iakoubova OA, Tong CH, Rowland CM et al (2008b) Association of the Trp719Arg polymorphism in kinesin-like protein 6 with myocardial infarction and coronary heart disease in 2 prospective trials: the CARE and WOSCOPS trials. J Am Coll Cardiol 51:435–443

    Article  CAS  PubMed  Google Scholar 

  • Ikari Y, McManus BM, Kenyon J, Schwartz SM (1999) Neonatal intima formation in the human coronary artery. Arterioscler Thromb Vasc Biol 19:2036–2040

    Article  CAS  PubMed  Google Scholar 

  • Imanishi T, McBride J, Ho Q, O'Brien KD, Schwartz SM, Han DK (2000) Expression of cellular FLICE-inhibitory protein in human coronary arteries and in a rat vascular injury model. Am J Pathol 156:125–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katz SS, Shipley GG, Small DM (1976) Physical chemistry of the lipids of human atherosclerotic lesions. Demonstration of a lesion intermediate between fatty streaks and advanced plaques. J Clin Investig 58:200–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kay HR, Korns ME, Flemma RJ, Tector AJ, Lepley D Jr (1976) Atherosclerosis of the internal mammary artery. Ann Thorac Surg 21:504–507

    Article  CAS  PubMed  Google Scholar 

  • Kellner-Weibel G, Yancey PG, Jerome WG et al (1999) Crystallization of free cholesterol in model macrophage foam cells. Arterioscler Thromb Vasc Biol 19:1891–1898

    Article  CAS  PubMed  Google Scholar 

  • Keso T, Perola M, Laippala P et al (2001) Polymorphisms within the tumor necrosis factor locus and prevalence of coronary artery disease in middle-aged men. Atherosclerosis 154:691–697

    Article  CAS  PubMed  Google Scholar 

  • Kolodgie FD, Narula J, Burke AP et al (2000) Localization of apoptotic macrophages at the site of plaque rupture in sudden coronary death. Am J Pathol 157:1259–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolodgie FD, Burke AP, Farb A et al (2001) The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes. Curr Opin Cardiol 16:285–292

    Article  CAS  PubMed  Google Scholar 

  • Kolodgie FD, Burke AP, Farb A et al (2002) Differential accumulation of proteoglycans and hyaluronan in culprit lesions: insights into plaque erosion. Arterioscler Thromb Vasc Biol 22:1642–1648

    Article  CAS  PubMed  Google Scholar 

  • Kolodgie FD, Gold HK, Burke AP et al (2003) Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 349:2316–2325

    Article  CAS  PubMed  Google Scholar 

  • Kolodgie FD et al (2009) Pathogenesis of atherosclerosis and the unstable plaque. In: Peter O, Kwiterovich J (eds) The Johns Hopkins textbook of dyslipidemia. Lipincott Williams &Wilkins, Baltimore

    Google Scholar 

  • Kramer MC, van der Wal AC, Koch KT et al (2009) Histopathological features of aspirated thrombi after primary percutaneous coronary intervention in patients with ST-elevation myocardial infarction. PLoS One 4:e5817

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kramer MC, Rittersma SZ, de Winter RJ et al (2010) Relationship of thrombus healing to underlying plaque morphology in sudden coronary death. J Am Coll Cardiol 55:122–132

    Article  PubMed  Google Scholar 

  • Lauber K, Bohn E, Krober SM et al (2003) Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113:717–730

    Article  CAS  PubMed  Google Scholar 

  • Leon ME, Chavez C, Fyfe B, Nagorsky MJ, Garcia FU (2002) Cholesterol granuloma of the maxillary sinus. Arch Pathol Lab Med 126:217–219

    PubMed  Google Scholar 

  • Levy AP, Levy JE, Kalet-Litman S et al (2007) Haptoglobin genotype is a determinant of iron, lipid peroxidation, and macrophage accumulation in the atherosclerotic plaque. Arterioscler Thromb Vasc Biol 27:134–140

    Article  CAS  PubMed  Google Scholar 

  • Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678–689

    Article  CAS  PubMed  Google Scholar 

  • Loop FD (1996) Internal-thoracic-artery grafts. Biologically better coronary arteries. N Engl J Med 334:263–265

    Article  CAS  PubMed  Google Scholar 

  • Loop FD, Lytle BW, Cosgrove DM et al (1986) Influence of the internal-mammary-artery graft on 10-year survival and other cardiac events. N Engl J Med 314:1–6

    Article  CAS  PubMed  Google Scholar 

  • Mann J, Davies MJ (1999) Mechanisms of progression in native coronary artery disease: role of healed plaque disruption. Heart (British Cardiac Society) 82:265–268

    CAS  Google Scholar 

  • Mannacio V, Di Tommaso L, Antignano A et al (2012) Endothelial nitric oxide synthase expression in postmenopausal women: a sex-specific risk factor in coronary surgery. Ann Thorac Surg 94:1934–1939

    Article  PubMed  Google Scholar 

  • McGill HC Jr, McMahan CA, Herderick EE et al (2000) Effects of coronary heart disease risk factors on atherosclerosis of selected regions of the aorta and right coronary artery. PDAY Research Group. Pathobiological Determinants of Atherosclerosis in Youth. Arterioscler Thromb Vasc Biol 20:836–845

    Article  PubMed  Google Scholar 

  • Michel JB, Virmani R, Arbustini E, Pasterkamp G (2011) Intraplaque haemorrhages as the trigger of plaque vulnerability. Eur Heart J 32:1977–1985, 1985a, 1985b, 1985c

    Article  PubMed  PubMed Central  Google Scholar 

  • Motoyama S, Kondo T, Sarai M et al (2007) Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol 50:319–326

    Article  PubMed  Google Scholar 

  • Motwani JG, Topol EJ (1998) Aortocoronary saphenous vein graft disease: pathogenesis, predisposition, and prevention. Circulation 97:916–931

    Article  CAS  PubMed  Google Scholar 

  • Myoishi M, Hao H, Minamino T et al (2007) Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome. Circulation 116:1226–1233

    Article  PubMed  Google Scholar 

  • Nakashima Y, Chen YX, Kinukawa N, Sueishi K (2002) Distributions of diffuse intimal thickening in human arteries: preferential expression in atherosclerosis-prone arteries from an early age. Virchows Arch 441:279–288

    Article  PubMed  Google Scholar 

  • Nakashima Y, Fujii H, Sumiyoshi S, Wight TN, Sueishi K (2007) Early human atherosclerosis: accumulation of lipid and proteoglycans in intimal thickenings followed by macrophage infiltration. Arterioscler Thromb Vasc Biol 27:1159–1165

    Article  CAS  PubMed  Google Scholar 

  • Nakashima Y, Wight TN, Sueishi K (2008) Early atherosclerosis in humans: role of diffuse intimal thickening and extracellular matrix proteoglycans. Cardiovasc Res 79:14–23

    Article  CAS  PubMed  Google Scholar 

  • Nicholls SJ, Tuzcu EM, Wolski K et al (2007) Coronary artery calcification and changes in atheroma burden in response to established medical therapies. J Am Coll Cardiol 49:263–270

    Article  PubMed  Google Scholar 

  • Noris M, Morigi M, Donadelli R et al (1995) Nitric oxide synthesis by cultured endothelial cells is modulated by flow conditions. Circ Res 76:536–543

    Article  CAS  PubMed  Google Scholar 

  • Ojha M, Leask RL, Johnston KW, David TE, Butany J (2000) Histology and morphology of 59 internal thoracic artery grafts and their distal anastomoses. Ann Thorac Surg 70:1338–1344

    Article  CAS  PubMed  Google Scholar 

  • Orekhov AN, Andreeva ER, Mikhailova IA, Gordon D (1998) Cell proliferation in normal and atherosclerotic human aorta: proliferative splash in lipid-rich lesions. Atherosclerosis 139:41–48

    Article  CAS  PubMed  Google Scholar 

  • Otsuka F, Yahagi K, Sakakura K, Virmani R (2013) Why is the mammary artery so special and what protects it from atherosclerosis? Ann Cardiothorac Surg 2:519–526

    PubMed  PubMed Central  Google Scholar 

  • Patterson JC (1954) The reaction of the arterial wall to intramural hemorrhage. In: Symposium of Atherosclerosis. Washington, DC: National Academy of Sciences, pp 65–73

    Google Scholar 

  • Perales S, Alejandre MJ, Palomino-Morales R, Torres C, Iglesias J, Linares A (2009) Effect of oxysterol-induced apoptosis of vascular smooth muscle cells on experimental hypercholesterolemia. J Biomed Biotechnol 2009:456208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peykar S, Angiolillo DJ, Bass TA, Costa MA (2004) Saphenous vein graft disease. Minerva Cardioangiol 52:379–390

    CAS  PubMed  Google Scholar 

  • Porto I, Gaudino M, De Maria GL et al (2013) Long-term morphofunctional remodeling of internal thoracic artery grafts: a frequency-domain optical coherence tomography study. Circ Cardiovasc Interv 6:269–276

    Article  PubMed  Google Scholar 

  • Purushothaman M, Krishnan P, Purushothaman KR et al (2012) Genotype-dependent impairment of hemoglobin clearance increases oxidative and inflammatory response in human diabetic atherosclerosis. Arterioscler Thromb Vasc Biol 32:2769–2775

    Article  CAS  PubMed  Google Scholar 

  • Ridker PM, Danielson E, Fonseca FA et al (2008) Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 359:2195–2207

    Article  CAS  PubMed  Google Scholar 

  • Sakakura K, Nakano M, Otsuka F et al (2013) Comparison of pathology of chronic total occlusion with and without coronary artery bypass graft. Eur Heart J. doi:10.1093/eurheartj/eht422

    Google Scholar 

  • Schrijvers DM, De Meyer GR, Kockx MM, Herman AG, Martinet W (2005) Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscler Thromb Vasc Biol 25:1256–1261

    Article  CAS  PubMed  Google Scholar 

  • Schwartz RS, Burke A, Farb A et al (2009) Microemboli and microvascular obstruction in acute coronary thrombosis and sudden coronary death: relation to epicardial plaque histopathology. J Am Coll Cardiol 54:2167–2173

    Article  PubMed  Google Scholar 

  • Serruys PW, Morice MC, Kappetein AP et al (2009) Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med 360:961–972

    Article  CAS  PubMed  Google Scholar 

  • Shelton ME, Forman MB, Virmani R, Bajaj A, Stoney WS, Atkinson JB (1988) A comparison of morphologic and angiographic findings in long-term internal mammary artery and saphenous vein bypass grafts. J Am Coll Cardiol 11:297–307

    Article  CAS  PubMed  Google Scholar 

  • Sluimer JC, Kolodgie FD, Bijnens AP et al (2009) Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions relevance of compromised structural integrity for intraplaque microvascular leakage. J Am Coll Cardiol 53:1517–1527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith EB, Slater RS (1972) The microdissection of large atherosclerotic plaques to give morphologically and topographically defined fractions for analysis. 1. The lipids in the isolated fractions. Atherosclerosis 15:37–56

    Article  CAS  PubMed  Google Scholar 

  • Stary HC, Blankenhorn DH, Chandler AB et al (1992) A definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol: J Vasc Biol/Am Heart Assoc 12:120–134

    Article  CAS  Google Scholar 

  • Stary HC, Chandler AB, Dinsmore RE et al (1995) A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol 15:1512–1531

    Article  CAS  PubMed  Google Scholar 

  • Sukhova GK, Schonbeck U, Rabkin E et al (1999) Evidence for increased collagenolysis by interstitial collagenases-1 and −3 in vulnerable human atheromatous plaques. Circulation 99:2503–2509

    Article  CAS  PubMed  Google Scholar 

  • Tabas I (2000) Cholesterol and phospholipid metabolism in macrophages. Biochim Biophys Acta 1529:164–174

    Article  CAS  PubMed  Google Scholar 

  • Tabas I (2002) Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. J Clin Invest 110:905–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabas I (2005) Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arterioscler Thromb Vasc Biol 25:2255–2264

    Article  CAS  PubMed  Google Scholar 

  • Tabas I, Marathe S, Keesler GA, Beatini N, Shiratori Y (1996) Evidence that the initial up-regulation of phosphatidylcholine biosynthesis in free cholesterol-loaded macrophages is an adaptive response that prevents cholesterol-induced cellular necrosis. Proposed role of an eventual failure of this response in foam cell necrosis in advanced atherosclerosis. J Biol Chem 271:22773–22781

    Article  CAS  PubMed  Google Scholar 

  • Tulenko TN, Chen M, Mason PE, Mason RP (1998) Physical effects of cholesterol on arterial smooth muscle membranes: evidence of immiscible cholesterol domains and alterations in bilayer width during atherogenesis. J Lipid Res 39:947–956

    CAS  PubMed  Google Scholar 

  • Van den Heuvel MM, Tensen CP, van As JH et al (1999) Regulation of CD 163 on human macrophages: cross-linking of CD163 induces signaling and activation. J Leukoc Biol 66:858–866

    PubMed  Google Scholar 

  • van der Wal AC, Becker AE, van der Loos CM, Das PK (1994) Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 89:36–44

    Article  PubMed  Google Scholar 

  • Vancov V (1973) Structural basis of the microcirculation in the wall of arterial vessels. Bibl Anat 11:383–388

    CAS  PubMed  Google Scholar 

  • Velican C (1969) Relationship between regional aortic susceptibility to atherosclerosis and macromolecular structural stability. J Atheroscler Res 9:193–201

    Article  CAS  PubMed  Google Scholar 

  • Velican C (1981) A dissecting view on the role of the fatty streak in the pathogenesis of human atherosclerosis: culprit or bystander? Med Interne 19:321–337

    CAS  PubMed  Google Scholar 

  • Velican D, Velican C (1980) Atherosclerotic involvement of the coronary arteries of adolescents and young adults. Atherosclerosis 36:449–460

    Article  CAS  PubMed  Google Scholar 

  • Velican C, Velican D (1982) Discrepancies between data on atherosclerotic involvement of human coronary arteries furnished by gross inspection and by light microscopy. Atherosclerosis 43:39–49

    Article  CAS  PubMed  Google Scholar 

  • Vengrenyuk Y, Carlier S, Xanthos S et al (2006) A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci U S A 103:14678–14683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virmani R, Narula J, Farb A (1998) When neoangiogenesis ricochets. Am Heart J 136:937–939

    Article  CAS  PubMed  Google Scholar 

  • Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20:1262–1275

    Article  CAS  PubMed  Google Scholar 

  • Virmani R, Kolodgie FD, Burke AP et al (2005) Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 25:2054–2061

    Article  CAS  PubMed  Google Scholar 

  • Waller BF, Roberts WC (1985) Remnant saphenous veins after aortocoronary bypass grafting: analysis of 3,394 centimeters of unused vein from 402 patients. Am J Cardiol 55:65–71

    Article  CAS  PubMed  Google Scholar 

  • Wang TJ, Larson MG, Levy D et al (2002) C-reactive protein is associated with subclinical epicardial coronary calcification in men and women: the Framingham Heart Study. Circulation 106:1189–1191

    Article  CAS  PubMed  Google Scholar 

  • Wartman WB (1938) Occlusion of the coronary arteries by hemorrhage into their walls. Am Heart J 15:459–470

    Article  Google Scholar 

  • Watson KE, Abrolat ML, Malone LL et al (1997) Active serum vitamin D levels are inversely correlated with coronary calcification. Circulation 96:1755–1760

    Article  CAS  PubMed  Google Scholar 

  • Winternitz MC, Thomas RM, Le Compte PM (1938) Thrombosis. In: Thomas CC (ed) The biology of atherosclerosis. Charles C Thomas, Springfield, pp 94–103

    Google Scholar 

  • Xu Y, Mintz GS, Tam A et al (2012) Prevalence, distribution, predictors, and outcomes of patients with calcified nodules in native coronary arteries: a 3-vessel intravascular ultrasound analysis from providing regional observations to Study Predictors of Events in the Coronary Tree (PROSPECT). Circulation 126:537–545

    Article  PubMed  Google Scholar 

  • Yazdani SK, Farb A, Nakano M et al (2012) Pathology of drug-eluting versus bare-metal stents in saphenous vein bypass graft lesions. JACC Cardiovasc Interv 5:666–674

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeagle PL (1985) Cholesterol and the cell membrane. Biochim Biophys Acta 822:267–287

    Article  CAS  PubMed  Google Scholar 

  • Zhong Y, Tang H, Zeng Q et al (2012) Total cholesterol content of erythrocyte membranes is associated with the severity of coronary artery disease and the therapeutic effect of rosuvastatin. Ups J Med Sci 117:390–398

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Virmani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Yahagi, K., Otsuka, F., Sakakura, K., Joner, M., Virmani, R. (2015). Native Coronary Artery and Bypass Graft Atherosclerosis. In: Lanzer, P. (eds) PanVascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37078-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37078-6_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37077-9

  • Online ISBN: 978-3-642-37078-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics