Skip to main content

Capacity Results for Arbitrarily Varying Wiretap Channels

  • Chapter
Information Theory, Combinatorics, and Search Theory

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7777))

Abstract

In this work the arbitrarily varying wiretap channel AVWC is studied. We derive a lower bound on the random code secrecy capacity for the average error criterion and the strong secrecy criterion in the case of a best channel to the eavesdropper by using Ahlswede’s robustification technique for ordinary AVCs. We show that in the case of a non-symmetrisable channel to the legitimate receiver the deterministic code secrecy capacity equals the random code secrecy capacity, a result similar to Ahlswede’s dichotomy result for ordinary AVCs. Using this we can derive that the lower bound is also valid for the deterministic code capacity of the AVWC. The proof of the dichotomy result is based on the elimination technique introduced by Ahlswede for ordinary AVCs. We further prove upper bounds on the deterministic code secrecy capacity in the general case, which results in a multi-letter expression for the secrecy capacity in the case of a best channel to the eavesdropper. Using techniques of Ahlswede, developed to guarantee the validity of a reliability criterion, the main contribution of this work is to integrate the strong secrecy criterion into these techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahlswede, R.: A note on the existence of the weak capacity for channels with arbitrarily varying channel probability functions and its relation to shannon’s zero error capacity. The Annals of Mathematical Statistics 41(3), 1027–1033 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahlswede, R.: Elimination of correlation in random codes for arbitrarily varying channels. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 44, 159–175 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ahlswede, R.: Arbitrarily varying channels with states sequence known to the sender. IEEE Trans. on Inf. Theory 32(5), 621–629 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ahlswede, R., Csiszár, I.: Common randomness in information theory and cryptography-part I: Secret sharing. IEEE Trans. on Inf. Theory 39(4), 1121–1132 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ahlswede, R., Csiszár, I.: Common randomness in information theory and cryptography-part ii: Cr capacity. IEEE Trans. on Inf. Theory 44(1), 225–240 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ahlswede, R., Wolfowitz, J.: The capacity of a channel with arbitrarily varying channel probability functions and binary output alphabet. Z. Wahrscheinlichkeitstheorie verw. Gebiete 15, 186–194 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bjelacović, I., Boche, H., Sommerfeld, J.: Capacity results for compound wiretap channels. In: Proc. IEEE Information Theory Workshop, pp. 60–64 (2011)

    Google Scholar 

  8. Bjelacović, I., Boche, H., Sommerfeld, J.: Secrecy results for compound wiretap channels. Submitted to Problems of Information Transmission (2011), http://arxiv.org/abs/1106.2013v1

  9. Bloch, M., Laneman, J.: On the secrecy capacity of arbitrary wiretap channel. In: Forty-Sixth Annual Allerton Conference, Allerton House, Illinois, USA (2008)

    Google Scholar 

  10. Csiszár, I., Körner, J.: Information Theory: Coding Theorems for Discrete Memoryless Systems. Akademiai Kiado (1981)

    Google Scholar 

  11. Csiszár, I., Narayan, P.: The capacity of the arbitrarily varying channel revisited: positivity, constraints. IEEE Trans. on Inf. Theory 34(2), 181–193 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ericson, T.: Exponential error bounds for random codes in the arbitrarily varying channel. IEEE Trans. on Inf. Theory 31(1), 42–48 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liang, Y., Kramer, G., Poor, H., Shamai, S.: Compound Wiretap Channels. EURASIP Journal on Wireless Communications and Networking (2008)

    Google Scholar 

  14. MolavianJazi, E.: Secure Communications over Arbitrarily Varying Wiretap Channels. Master’s thesis, Graduate School of the University of Notre Dame (2009)

    Google Scholar 

  15. Shannon, C.: The zero error capacity of a noisy channel. IRE Trans. Information Theory IT-2, 8–19 (1956)

    Google Scholar 

  16. Wyrembelski, R.F., Bjelaković, I., Oechtering, T.J., Boche, H.: Optimal coding strategies for bidirectional broadcast channels under channel uncertainty. IEEE Trans. on Communications 58(10), 2984–2994 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bjelaković, I., Boche, H., Sommerfeld, J. (2013). Capacity Results for Arbitrarily Varying Wiretap Channels. In: Aydinian, H., Cicalese, F., Deppe, C. (eds) Information Theory, Combinatorics, and Search Theory. Lecture Notes in Computer Science, vol 7777. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36899-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36899-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36898-1

  • Online ISBN: 978-3-642-36899-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics