Skip to main content

Part of the book series: RNA Technologies ((RNATECHN))

  • 2068 Accesses

Abstract

Aptamers are oligonucleotides obtained by a combinatorial method from randomly synthesized libraries. They usually exhibit strong affinity and high specificity of interaction with a predetermined target. They actually rival antibodies and are of interest for multiple purposes, notably for diagnostic. As aptamers can be easily immobilized on a number of surfaces, they can be used for detecting the presence of viral constituents, RNA or proteins. The detection can be carried out in a number of different formats (fluorescence, SPR, etc.). We raised aptamers against RNA motifs of the human immunodeficiency virus or of the hepatitis C virus. Such aptamers display a very high specificity of recognition, surpassing that of complementary oligonucleotides as they recognize the 3D shape and not only the primary sequence. We also raised aptamers against the M1 protein of the influenza virus allowing its detection. We took advantage of fluorescence transfer for monitoring interactions between aptamers and their cognate ligand immobilized on particles. This strategy could be used either for screening libraries or for evaluating the presence of an analyte.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldaz-Carroll L, Tallet B, Dausse E et al (2002) Apical loop-internal loop interactions: a new RNA-RNA recognition motif identified through in vitro selection against RNA hairpins of the hepatitis C virus mRNA. Biochemistry 41:5883–5893

    Article  PubMed  CAS  Google Scholar 

  • Andréola ML, Calmels C, Michel J et al (2000) Towards the selection of phosphorothioate aptamers optimizing in vitro selection steps with phosphorothioate nucleotides. Eur J Biochem 267:5032–5040

    Article  PubMed  Google Scholar 

  • Andréola ML, Pileur F, Calmels C et al (2001) DNA aptamers selected against the HIV-1 RNase H display in vitro antiviral activity. Biochemistry 40:10087–10094

    Article  PubMed  CAS  Google Scholar 

  • Arnold S, Pampalakis G, Kantiotou K et al (2012) One round of SELEX for the generation of DNA aptamers directed against KLK6. Biol Chem 393:343–353

    Article  PubMed  CAS  Google Scholar 

  • Baudin F, Bach C, Cusack S et al (1994) Structure of influenza virus RNP. I. Influenza virus nucleoprotein melts secondary structure in panhandle RNA and exposes the bases to the solvent. EMBO J 13:3158–3165

    PubMed  CAS  Google Scholar 

  • Beaurain F, Di Primo C, Toulmé JJ et al (2003) Molecular dynamics reveals the stabilizing role of loop closing residues in kissing interactions: comparison between TAR-TAR* and TAR-aptamer. Nucleic Acids Res 31:4275–4284

    Article  PubMed  CAS  Google Scholar 

  • Bellecave P, Andréola ML, Ventura M et al (2003) Selection of DNA aptamers that bind the RNA-dependent RNA polymerase of hepatitis C virus and inhibit viral RNA synthesis in vitro. Oligonucleotides 13:455–463

    Article  PubMed  CAS  Google Scholar 

  • Berezhnoy A, Stewart CA, McNamara JO et al (2012) Isolation and optimization of murine IL-10 receptor blocking oligonucleotide aptamers using high-throughput sequencing. Mol Ther 20:1242–1250

    Article  PubMed  CAS  Google Scholar 

  • Berezovski M, Musheev M, Drabovich A et al (2006) Non-SELEX selection of aptamers. J Am Chem Soc 128:1410–1411

    Article  PubMed  CAS  Google Scholar 

  • Berkhout B (2000) Multiple biological roles associated with the repeat (R) region of the HIV-1 RNA genome. Adv Pharmacol 48:29–73

    Article  PubMed  CAS  Google Scholar 

  • Binning JM, Leung DW (2012) Aptamers in virology: recent advances and challenges. Front Microbiol 3:29

    Article  PubMed  CAS  Google Scholar 

  • Binning JM, Leung DW, Amarasinghe GK (2012) Aptamers in virology: recent advances and challenges. Front Microbiol 3:29

    Article  PubMed  CAS  Google Scholar 

  • Biroccio A, Hamm J, Incitti I et al (2002) Selection of RNA aptamers that are specific and high-affinity ligands of the hepatitis C virus RNA-dependent RNA polymerase. J Virol 76:3688–3696

    Article  PubMed  CAS  Google Scholar 

  • Boiziau C, Dausse E, Yurchenko L et al (1999) DNA aptamers selected against the HIV-1 trans-activation-responsive RNA element form RNA-DNA kissing complexes. J Biol Chem 274:12730–12737

    Article  PubMed  CAS  Google Scholar 

  • Boucard D, Toulmé JJ, Di Primo C (2006) Bimodal loop-loop interactions increase the affinity of RNA aptamers for HIV-1 RNA structures. Biochemistry 45:1518–1524

    Article  PubMed  CAS  Google Scholar 

  • Bunka DH, Stockley PG (2006) Aptamers come of age—at last. Nat Rev Microbiol 4:588–596

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Nakamoto K, Niwa O et al (2012) On-chip synthesis of RNA aptamer microarrays for multiplexed protein biosensing with SPR imaging measurements. Langmuir 28:8281–8285

    Article  PubMed  CAS  Google Scholar 

  • Choi SK, Lee C, Lee KS et al (2011) DNA aptamers against the receptor binding region of hemagglutinin prevent avian influenza viral infection. Mol Cells 32:527–533

    Article  PubMed  CAS  Google Scholar 

  • Collett JR, Cho EJ, Ellington AD (2005) Production and processing of aptamer microarrays. Methods 37:4–15

    Article  PubMed  CAS  Google Scholar 

  • Collin D, van Heijenoort C, Boiziau C et al (2000) NMR characterization of a kissing complex formed between the TAR RNA element of HIV-1 and a DNA aptamer. Nucleic Acids Res 28:3386–3391

    Article  PubMed  CAS  Google Scholar 

  • Comolli LR, Pelton JG, Tinoco I Jr (1998) Mapping of a protein-RNA kissing hairpin interface: Rom and Tar-Tar*. Nucleic Acids Res 26:4688–4695

    Article  PubMed  CAS  Google Scholar 

  • Cox JC, Ellington AD (2001) Automated selection of anti-protein aptamers. Bioorg Med Chem 9:2525–2531

    Article  PubMed  CAS  Google Scholar 

  • Cui ZQ, Ren Q, Wei HP et al (2011) Quantum dot-aptamer nanoprobes for recognizing and labeling influenza A virus particles. Nanoscale 3:2454–2457

    Article  PubMed  CAS  Google Scholar 

  • Cullen DC, Brown RG, Lowe CR (1987) Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings. Biosensors 3:211–225

    Article  PubMed  CAS  Google Scholar 

  • Da Rocha GS, Dausse E, Toulmé JJ (2004) Determinants of apical loop-internal loop RNA-RNA interactions involving the HCV IRES. Biochem Biophys Res Commun 322:820–826

    Article  CAS  Google Scholar 

  • Darfeuille F, Cazenave C, Gryaznov S et al (2001) RNA and N3′-->P5′ kissing aptamers targeted to the trans-activation responsive (TAR) RNA of the human immunodeficiency virus-1. Nucleosides Nucleotides Nucleic Acids 20:441–449

    Article  PubMed  CAS  Google Scholar 

  • Darfeuille F, Arzumanov A, Gait MJ et al (2002a) 2′-O-methyl-RNA hairpins generate loop-loop complexes and selectively inhibit HIV-1 Tat-mediated transcription. Biochemistry 41:12186–12192

    Article  PubMed  CAS  Google Scholar 

  • Darfeuille F, Sekkai D, Dausse E et al (2002b) Driving in vitro selection of anti-HIV-1 TAR aptamers by magnesium concentration and temperature. Comb Chem High Throughput Screen 5:313–525

    Article  PubMed  CAS  Google Scholar 

  • Darfeuille F, Hansen JB, Orum H, Di Primo C, Toulmé JJ (2004) LNA/DNA chimeric oligomers mimic RNA aptamers targeted to the TAR RNA element of HIV-1. Nucleic Acids Res 2004(2):3101–3107

    Article  CAS  Google Scholar 

  • Darfeuille F, Reigadas S, Hansen JB et al (2006) Aptamers targeted to an RNA hairpin show improved specificity compared to that of complementary oligonucleotides. Biochemistry 45:12076–12082

    Article  PubMed  CAS  Google Scholar 

  • Dausse E, Cazenave C, Rayner B et al (2005) In vitro selection procedures for identifying DNA and RNA aptamers targeted to nucleic acids and proteins. Methods Mol Biol 288:391–410

    PubMed  CAS  Google Scholar 

  • Dausse E, Da Rocha GS, Toulmé JJ (2009) Aptamers: a new class of oligonucleotides in the drug discovery pipeline? Curr Opin Pharmacol 9:602–607

    Article  PubMed  CAS  Google Scholar 

  • Dausse E, Taouji S, Evadé L et al (2011) HAPIscreen, a method for high-throughput aptamer identification. J Nanobiotechnology 9:25

    Article  PubMed  CAS  Google Scholar 

  • Davis DR, Seth PP (2011) Therapeutic targeting of HCV internal ribosomal entry site RNA. Antivir Chem Chemother 21:117–128

    Article  PubMed  CAS  Google Scholar 

  • Demeulemeester J, Tintori C, Botta M et al (2012) Development of an AlphaScreen-based HIV-1 integrase dimerization assay for discovery of novel allosteric inhibitors. J Biomol Screen 17:618–628

    Article  PubMed  CAS  Google Scholar 

  • Di Primo C, Rudloff I, Reigadas S et al (2007) Systematic screening of LNA/2′-O-methyl chimeric derivatives of a TAR RNA aptamer. FEBS Lett 581:771–774

    Article  PubMed  CAS  Google Scholar 

  • Diviney S, Tuplin A, Struthers M et al (2008) A hepatitis C virus cis-acting replication element forms a long-range RNA-RNA interaction with upstream RNA sequences in NS5B. J Virol 82:9008–9022

    Article  PubMed  CAS  Google Scholar 

  • Ducongé F, Toulmé JJ (1999) In vitro selection identifies key determinants for loop-loop interactions: RNA aptamers selective for the TAR RNA element of HIV-1. RNA 5:1605–1614

    Article  PubMed  Google Scholar 

  • Ducongé F, Di Primo C, Toulmé JJ (2000) Is a closing “GA pair” a rule for stable loop-loop RNA complexes? J Biol Chem 275:21287–21294

    Article  PubMed  Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  PubMed  CAS  Google Scholar 

  • Eulberg D, Buchner K, Maasch C et al (2005) Development of an automated in vitro selection protocol to obtain RNA-based aptamers: identification of a biostable substance P antagonist. Nucleic Acids Res 33:e45

    Article  PubMed  CAS  Google Scholar 

  • Fagerstam LG, Frostell A, Karlsson R et al (1990) Detection of antigen-antibody interactions by surface plasmon resonance. Application to epitope mapping. J Mol Recognit 3:208–214

    Article  PubMed  CAS  Google Scholar 

  • Finlay BB, McFadden G (2006) Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell 124:767–782

    Article  PubMed  CAS  Google Scholar 

  • Friebe P, Bartenschlager R (2002) Genetic analysis of sequences in the 3′ nontranslated region of hepatitis C virus that are important for RNA replication. J Virol 76:5326–5538

    Article  PubMed  CAS  Google Scholar 

  • Fu W, Gorelick RJ, Rein A (1994) Characterization of human immunodeficiency virus type 1 dimeric RNA from wild-type and protease-defective virions. J Virol 68:5013–5508

    PubMed  CAS  Google Scholar 

  • Gold L, Ayers D, Bertino J et al (2010) Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One 5:e15004

    Article  PubMed  CAS  Google Scholar 

  • Gopinath SC, Kawasaki K, Kumar PK (2005) Selection of RNA-aptamer against human influenza B virus. Nucleic Acids Symp Ser (Oxf) (49):85–86

    Google Scholar 

  • Gopinath SC, Sakamaki Y, Kawasaki K et al (2006) An efficient RNA aptamer against human influenza B virus hemagglutinin. J Biochem (Tokyo) 139:837–846

    Article  CAS  Google Scholar 

  • Gordon CG, Mackey JL, Jewett JC et al (2012) Reactivity of biarylazacyclooctynones in copper-free click chemistry. J Am Chem Soc 134:9199–9208

    Article  PubMed  CAS  Google Scholar 

  • Gregorian RS Jr, Crothers DM (1995) Determinants of RNA hairpin loop-loop complex stability. J Mol Biol 248:968–984

    Article  PubMed  CAS  Google Scholar 

  • Guedon P, Livache T, Martin F et al (2000) Characterization and optimization of a real-time, parallel, label-free, polypyrrole-based DNA sensor by surface plasmon resonance imaging. Anal Chem 72:6003–6009

    Article  PubMed  CAS  Google Scholar 

  • Heiny AT, Miotto O, Srinivasan KN et al (2007) Evolutionarily conserved protein sequences of influenza a viruses, avian and human, as vaccine targets. PLoS One 2:e1190

    Article  PubMed  CAS  Google Scholar 

  • Henn C, Boettcher S, Steinbach A et al (2012) Catalytic enzyme activity on a biosensor chip: combination of surface plasmon resonance and mass spectrometry. Anal Biochem 428:28–30

    Article  PubMed  CAS  Google Scholar 

  • James W (2007) Aptamers in the virologists’ toolkit. J Gen Virol 88:351–364

    Article  PubMed  CAS  Google Scholar 

  • Jayaprakash KN, Peng CG, Butler D et al (2010) Non-nucleoside building blocks for copper-assisted and copper-free click chemistry for the efficient synthesis of RNA conjugates. Org Lett 12:5410–5413

    Article  PubMed  CAS  Google Scholar 

  • Jeon SH, Kayhan B, Ben-Yedidia T et al (2004) A DNA aptamer prevents influenza infection by blocking the receptor binding region of the viral hemagglutinin. J Biol Chem 279:48410–48419

    Article  PubMed  CAS  Google Scholar 

  • Karn J (1999) Tackling Tat. J Mol Biol 293:235–254

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi K, Umehara T, Fukuda K et al (2003) RNA aptamers targeted to domain II of hepatitis C virus IRES that bind to its apical loop region. J Biochem (Tokyo) 133:263–270

    Article  CAS  Google Scholar 

  • Kikuchi K, Umehara T, Fukuda K et al (2005) A hepatitis C virus (HCV) internal ribosome entry site (IRES) domain III-IV-targeted aptamer inhibits translation by binding to an apical loop of domain IIId. Nucleic Acids Res 33:683–692

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi K, Umehara T, Nishikawa F et al (2009) Increased inhibitory ability of conjugated RNA aptamers against the HCV IRES. Biochem Biophys Res Commun 386:118–123

    Article  PubMed  CAS  Google Scholar 

  • Kolb G, Reigadas S, Castanotto D et al (2006) Endogenous expression of an anti-TAR aptamer reduces HIV-1 replication. RNA Biol 3:150–156

    Article  PubMed  CAS  Google Scholar 

  • Kota S, Coito C, Mousseau G et al (2009) Peptide inhibitors of hepatitis C virus core oligomerization and virus production. J Gen Virol 90:1319–1328

    Article  PubMed  CAS  Google Scholar 

  • Krone JR, Nelson RW, Dogruel D et al (1997) BIA/MS: interfacing biomolecular interaction analysis with mass spectrometry. Anal Biochem 244:124–132

    Article  PubMed  CAS  Google Scholar 

  • Kupakuwana GV, Crill JE 2nd, McPike MP et al (2011) Acyclic identification of aptamers for human alpha-thrombin using over-represented libraries and deep sequencing. PLoS One 6:e19395

    Article  PubMed  CAS  Google Scholar 

  • Lautner G, Balogh Z, Bardoczy V et al (2010) Aptamer-based biochips for label-free detection of plant virus coat proteins by SPR imaging. Analyst 135:918–926

    Article  PubMed  CAS  Google Scholar 

  • Lebars I, Legrand P, Aimé A et al (2008) Exploring TAR-RNA aptamer loop-loop interaction by X-ray crystallography, UV spectroscopy and surface plasmon resonance. Nucleic Acids Res 36:7146–7156

    Article  PubMed  CAS  Google Scholar 

  • Lima WF, Crooke ST (1997) Binding affinity and specificity of Escherichia coli RNase H1: impact on the kinetics of catalysis of antisense oligonucleotide-RNA hybrids. Biochemistry 36:390–398

    Article  PubMed  CAS  Google Scholar 

  • Lopez F, Pichereaux C, Burlet-Schiltz O et al (2003) Improved sensitivity of biomolecular interaction analysis mass spectrometry for the identification of interacting molecules. Proteomics 3:402–412

    Article  PubMed  CAS  Google Scholar 

  • Mairal T, Cengiz Ozalp V, Lozano Sanchez P et al (2007) Aptamers: molecular tools for analytical applications. Anal Bioanal Chem 390:989–1007

    Article  PubMed  CAS  Google Scholar 

  • Marton S, Berzal-Herranz B, Garmendia E et al (2012) Anti-HCV RNA aptamers targeting the genomic cis-acting replication element. Pharmaceuticals 5:49–60

    Article  CAS  Google Scholar 

  • Mascini M, Palchetti I, Tombelli S (2012) Nucleic acid and peptide aptamers: fundamentals and bioanalytical aspects. Angew Chem Int Ed Engl 51:1316–1332

    Article  PubMed  CAS  Google Scholar 

  • Mayer G (2009) The chemical biology of aptamers. Angew Chem Int Ed Engl 48:2672–2689

    Article  PubMed  CAS  Google Scholar 

  • Misono TS, Kumar PK (2005) Selection of RNA aptamers against human influenza virus hemagglutinin using surface plasmon resonance. Anal Biochem 342:312–317

    Article  PubMed  CAS  Google Scholar 

  • Muriaux D, De Rocquigny H, Roques BP et al (1996) NCp7 activates HIV-1Lai RNA dimerization by converting a transient loop-loop complex into a stable dimer. J Biol Chem 271:33686–33692

    Article  PubMed  CAS  Google Scholar 

  • Nair TM, Myszka DG, Davis DR (2000) Surface plasmon resonance kinetic studies of the HIV TAR RNA kissing hairpin complex and its stabilization by 2-thiouridine modification. Nucleic Acids Res 28:1935–1940

    Article  PubMed  CAS  Google Scholar 

  • Negri P, Kage A, Nitsche A et al (2011) Detection of viral nucleoprotein binding to anti-influenza aptamers via SERS. Chem Commun (Camb) 47:8635–8637

    Article  CAS  Google Scholar 

  • Negri P, Chen G, Kage A et al (2012) Direct optical detection of viral nucleoprotein binding to an anti-influenza aptamer. Anal Chem 84:5501–5508

    Article  PubMed  CAS  Google Scholar 

  • Nitsche A, Kurth A, Dunkhorst A et al (2007) One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX. BMC Biotechnol 7:48

    Article  PubMed  CAS  Google Scholar 

  • Park SY, Kim S, Yoon H et al (2011) Selection of an antiviral RNA aptamer against hemagglutinin of the subtype H5 avian influenza virus. Nucleic Acid Ther 21:395–402

    Article  PubMed  CAS  Google Scholar 

  • Pileur F, Andreola ML, Dausse E, Michel J, Moreau S, Yamada H, Gaidamakov SA, Crouch RJ, Toulmé JJ, Cazenave C (2003) Selective inhibitory DNA aptamers of the human RNase H1. Nucleic Acids Res 31:5776–5788

    Article  PubMed  CAS  Google Scholar 

  • Pinheiro VB, Taylor AI, Cozens C et al (2012) Synthetic genetic polymers capable of heredity and evolution. Science 336:341–344

    Article  PubMed  CAS  Google Scholar 

  • Remy-Martin F, El Osta M, Lucchi G et al (2012) Surface plasmon resonance imaging in arrays coupled with mass spectrometry (SUPRA-MS): proof of concept of on-chip characterization of a potential breast cancer marker in human plasma. Anal Bioanal Chem 404:423–432

    Article  PubMed  CAS  Google Scholar 

  • Rich RL, Myszka DG (2011) Survey of the 2009 commercial optical biosensor literature. J Mol Recognit 24:892–914

    Article  PubMed  CAS  Google Scholar 

  • Robertson DL, Joyce GF (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344:467–468

    Article  PubMed  CAS  Google Scholar 

  • Roh S, Chung T, Lee B (2012) Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors. Sensors 11:1565–1588

    Article  Google Scholar 

  • Romero-Lopez C, Diaz-Gonzalez R, Barroso-delJesus A et al (2009) Inhibition of hepatitis C virus replication and internal ribosome entry site-dependent translation by an RNA molecule. J Gen Virol 90:1659–1669

    Article  PubMed  CAS  Google Scholar 

  • Sehr P, Pawlita M, Lewis J (2007) Evaluation of different glutathione S-transferase-tagged protein captures for screening E6/E6AP interaction inhibitors using AlphaScreen. J Biomol Screen 12:560–567

    Article  PubMed  CAS  Google Scholar 

  • Stoltenburg R, Reinemann C, Strehlitz B (2007) SELEX–a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24:381–403

    Article  PubMed  CAS  Google Scholar 

  • Sundaram P, Kurniawan H, Byrne ME et al (2012) Therapeutic RNA aptamers in clinical trials. Eur J Pharm Sci 48:259–271

    Article  PubMed  CAS  Google Scholar 

  • Taouji S, Dahan S, Bosse R et al (2009) Current screens based on the AlphaScreen technology for deciphering cell signalling pathways. Curr Genomics 10:93–101

    Article  PubMed  CAS  Google Scholar 

  • Tintori C, Demeulemeester J, Franchi L et al (2012) Discovery of small molecule HIV-1 integrase dimerization inhibitors. Bioorg Med Chem Lett 22:3109–3114

    Article  PubMed  CAS  Google Scholar 

  • Tombelli S, Minunni M, Luzi E et al (2005) Aptamer-based biosensors for the detection of HIV-1 Tat protein. Bioelectrochemistry 67:135–141

    Article  PubMed  CAS  Google Scholar 

  • Toulmé J-J, Di Primo C, Moreau S (2001) Modulation of RNA function by oligonucleotides recognizing RNA structure. Prog Nucleic Acid Res Mol Biol 69:1–46

    Article  PubMed  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  PubMed  CAS  Google Scholar 

  • Tuerk C, MacDougal S, Gold L (1992) RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. Proc Natl Acad Sci USA 89:6988–6992

    Article  PubMed  CAS  Google Scholar 

  • Ullman EF, Kirakossian H, Singh S et al (1994) Luminescent oxygen channeling immunoassay: measurement of particle binding kinetics by chemiluminescence. Proc Natl Acad Sci USA 91:5426–5430

    Article  PubMed  CAS  Google Scholar 

  • Upert G, Di Giorgio A, Upadhyay A et al (2012) Inhibition of HIV replication by cyclic and hairpin PNAs targeting the HIV-1 TAR RNA loop. J Nucleic Acids 2012:591025

    Article  PubMed  CAS  Google Scholar 

  • Van Melckebeke H, Devany M, Di Primo C et al (2008) Liquid-crystal NMR structure of HIV TAR RNA bound to its SELEX RNA aptamer reveals the origins of the high stability of the complex. Proc Natl Acad Sci USA 105:9210–9215

    Article  PubMed  Google Scholar 

  • Wang Z, Wilkop T, Xu D et al (2007) Surface plasmon resonance imaging for affinity analysis of aptamer-protein interactions with PDMS microfluidic chips. Anal Bioanal Chem 389:819–825

    Article  PubMed  CAS  Google Scholar 

  • Wang RE, Wu H, Niu Y et al (2011) Improving the stability of aptamers by chemical modification. Curr Med Chem 18:4126–4138

    Article  PubMed  CAS  Google Scholar 

  • Watrin M, Von Pelchrzim F, Dausse E et al (2009) In vitro selection of RNA aptamers derived from a genomic human library against the TAR RNA element of HIV-1. Biochemistry 48:6278–6284

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Rossi JJ (2011) Cell-specific aptamer-mediated targeted drug delivery. Oligonucleotides 21:1–10

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Bobbin ML, Burnett JC et al (2012) Current progress of RNA aptamer-based therapeutics. Front Genet 3:234

    Article  PubMed  Google Scholar 

  • Zimmermann B, Gesell T, Chen D et al (2010) Monitoring genomic sequences during SELEX using high-throughput sequencing: neutral SELEX. PLoS One 5:e9169

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr Sonia Da Rocha, Mrs Laetitia Evadé, and Ms Emilie Daguerre (Bordeaux) for sharing unpublished results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Jacques Toulmé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Toulmé, JJ., Primo, C.D., Dausse, E., Desmecht, D., Cornet, F., Azéma, L. (2013). Aptamers: Analytical Tools for Viral Components. In: Erdmann, V., Barciszewski, J. (eds) DNA and RNA Nanobiotechnologies in Medicine: Diagnosis and Treatment of Diseases. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36853-0_17

Download citation

Publish with us

Policies and ethics