Skip to main content

The Chemical Composition and Evolution of Volcanic Lakes

  • Chapter
  • First Online:
Volcanic Lakes

Part of the book series: Advances in Volcanology ((VOLCAN))

Abstract

Volcanic lakes carry fluids that range from ultra acid, high TDS brines to largely meteoric fluids. Their water compositions are governed by volcanic fluid inputs, which range from almost raw, cooled volcanic gases (largely S–Cl–F–CO2 rich fluid) to more mature solutions that result from interaction of these acid fluids with volcanic rocks. Volcanic inputs can have reacted with mature protoliths (low degrees of neutralization) or with freshly intruded magma (high degrees of water rock interaction), the latter often resulting in the precipitation of secondary minerals such as alunite. The detailed chemical lake water composition is a reflection of mineral precipitation, fractionation of trace elements in the precipitated phases (such as the rare earth elements and metals in sulfides) and element vapor phase transport by the volcanic gases. Variations in lake composition result from a changing volcanic input composition or magnitude and thus are important in volcano monitoring. The lake water dynamics also impact the lake water composition over time, and variations in evaporation rate, meteoric water input and dramatic changes in input may cause changes in element concentrations and ratios related to non steady state effects. The recovery time to steady state differs strongly between open and closed lake systems. The stable isotope compositions of volcanic lake waters reflect W/R interaction (higher δ18O), degree of volcanic gas input (higher δ18O and δD), and evaporation at elevated temperatures (flat evaporation lines). Isotope ratios of other elements usually reflect the nature of the volcanic inputs or dissolved rock. Volcanic lakes can be charged with toxic elements that upon release may impact local ecosystems and agricultural land or drinking water downstream. Volcanic lakes charged with poorly soluble gases such as CO2 and methane may represent hazards of limnic eruptions. Failure of retaining walls or dams of acid lakes may cause acid floods with damage to land and livestock downstream.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acero P, Ayora C, Torrento C, Nieto JM (2006) The behaviour of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite. Geochim Cosmochim Acta 70:4130–4139

    Google Scholar 

  • Aeschbach-Hertig W, Kipfer R, Hofer M, Imboden DM, Wieler R, Signer P (1996) Quantification of gas fluxes from the subcontinental mantle; the example of Laacher See, a maar lake in Germany. Geochim Cosmochim Acta 60:31–41

    Google Scholar 

  • Aiuppa A, Allard P, D’Alessandro W, Michel A, Parello F, Treuil M, Valenza M (2000) Mobility and fluxes of major, minor and trace metals during basalt weathering and groundwater transport at Mt. Etna volcano (Sicily). Geochim Cosmochim Acta 64(11):1827–1841

    Google Scholar 

  • Aja SU, Wood SA, Williams-Jones AE (1995) The aqueous geochemistry of Zr and the solubility of some zirconium-bearing minerals. Appl Geochem 10:603–620

    Google Scholar 

  • Agusto M, Caselli AT, Tassi F, Dos Santos Afonso M, Vaselli O (2012) Seguimiento geoquímico de las aguas ácidas del sistema volcán Copahue-Río Agrio: posible aplicación para la identificación de precursores eruptivos. Revista de la Asociación Geológica Argentina 69(4):481–495

    Google Scholar 

  • Agusto M, Tassi F, Caselli AT, Vaselli O, Rouwet D, Capaccioni B, Caliro S (2013) Gas geochemistry of the magmatic-hydrothermal fluid reservoir in the Copahue-Caviahue volcanic complex (Argentina). J Volcanol Geotherm Res 257:44–56

    Google Scholar 

  • Albarède F (1995) Introduction to geochemical modeling. Cambridge Univ Press, Cambridge, p 543

    Google Scholar 

  • Armienta MA, De la Cruz Reyna S, Macías JL (2000) Chemical characteristics of the crater lakes of Popocatepetl, El Chichón, and Nevado de Toluca volcanoes, Mexico. J Volcanol Geotherm Res 97:105–125

    Google Scholar 

  • Arribas A (1995) Characteristics of high-sulfidation epithermal deposits, and their relation to magmatic fluid in magmas, fluids, and ore deposits. In: Thompson JFM (ed), Mineralogical Association of Canada Short Course, vol 23(19), pp 419–454

    Google Scholar 

  • Ayers G (2012) Behaviour of the REE during water rock interaction and alteration processes in volcanic lake systems. Ms thesis, Utrecht University, The Netherlands, pp 102

    Google Scholar 

  • Bani P, Oppenheimer C, Varekamp JC, Quinou T, Lardy M, Carn S (2009) Remarkable geochemical changes and degassing at Voui crater lake, Ambae volcano, Vanuatu. J Volcanol Geotherm Res 213:47–357

    Google Scholar 

  • Bao SX, Zhou HY, Peng XT, Ji FW, Yao HO (2008) Geochemistry of REE and yttrium in hydrothermal fluids from the endeavour segment, Juan de Fuca Ridge. Geochem J 42:359–370

    Google Scholar 

  • Bernard A, Mazot A (2004) Geochemical evolution of the young crater lake of Kelud volcano in Indonesia. Water-Rock interaction (WRI-11). In: Wanty and Seal II (eds) Balkema AA Publishers vol 1 pp 87–90

    Google Scholar 

  • Bernard A, Escobar CD, Mazot A, Guttiérez RE (2004) The acid volcanic lake of Santa Ana volcano, El Salvador. In: Rose WI, Bommer JJ, López, DL, Carr MJ, Major JJ (eds) Natural hazards in El Salvador: Boulder, Colorado, Geol Soc Am Special, Paper vol 375 pp 121–133

    Google Scholar 

  • Bozau E, LeBlanc M, Seidel JL, Stark HJ (2004) Light rare earth element enrichments in an acidic mine lake (Lusatia, Germany). Appl Geochem 19:261–271

    Google Scholar 

  • Brantley SL, Borgia A, Rowe G, Fernández JF, Reynolds JR (1987) Poás volcano crater lake acts as a condenser for acid metal-rich brine. Nature 330:470–472

    Google Scholar 

  • Burwell IR (2003)The responses of diatoms to the influx of tephras into lacustrine environments. MSc thesis, Canterbury University, New Zealand, pp 170

    Google Scholar 

  • Carapezza ML, Lelli M, Tarchini L (2008) Geochemistry of the Albani and Nemi crater lake in the volcanic district of Alban Hills. J Volcanol Geotherm Res 178:297–304

    Google Scholar 

  • Cartigny P, Harris JW, Javoy M (2001) Diamond genesis, mantle fractionations and mantle nitrogen content: a study of δ13C–N concentrations in diamonds. Earth Plan Sci Lett 185:85–98

    Google Scholar 

  • Caudron C, Mazot A, Bernard A (2012) Carbon dioxide dynamics in Kelud volcanic lake. J Geophys Res B5102. doi:10.1029/2011JB008806

  • Chapman M (2007) The geology of Mars—evidence from earth-based analogs. Cambridge University Press, Cambridge, p 484

    Google Scholar 

  • Chiodini G, Cioni R, Guidi M, Marini L, Raco B (2000) Water chemistry of Lake Quilotoa (Ecuador) and assessment of natural hazards. J Volcanol Geotherm Res 97:271–285

    Google Scholar 

  • Chiodini G, Tassi F, Caliro S, Chiarabba C, Vaselli O, Rouwet D (2012) Time-dependent CO2 variations in Lake Albano associated with seismic activity. Bull Volcanol 74:861–871

    Google Scholar 

  • Christenson BW (1994) Convection and stratification in Ruapehu Crater Lake, New Zealand: implications for Lake Nyos-type gas release eruptions. Geochem J 28:185–198

    Google Scholar 

  • Christenson BW (2000) Geochemistry of fluids associated with the 1995–1996 eruption of Mt. Ruapehu, New Zealand: signatures and processes in the magmatic hydrothermal system. J Volcanol Geotherm Res 97:1–30

    Google Scholar 

  • Christenson BW, Tassi F (this issue) Gases in volcanic lake environments. In: Rouwet D, Christenson BW, Tassi F, Vandemeulebrouck J (eds) Volcanic lakes. Springer, Heidelberg

    Google Scholar 

  • Christenson BW, Wood CP (1993) Evolution of a vent-hosted hydrothermal system beneath Ruapehu Crater Lake, New Zealand. Bull Volcanol 55:547–565

    Google Scholar 

  • Colvin A, Rose WI, Varekamp JC, Palma JL, Escobar D, Gutiérrez E, Montalvo F, Maclean A (2013) Crater lake evolution at Santa Ana volcano following the 2005 eruption. In: Rose WI, Palma JL, Delgado Granados H, and Varley N (eds) Understanding open vent volcanism and related hazards, Geol Soc America, Special Paper, vol 498(2), pp 23–44. doi:10.1130/2013.2498(00)

  • Delmelle P, Bernard A (1994) Geochemistry, mineralogy and chemical modeling of the acid crater lake of Kawah Ijen Volcano, Indonesia. Geochim Cosmochim Acta 58:2445–2460

    Google Scholar 

  • Delmelle P, Bernard A (2000a) Volcanic Lakes. In: H Sigurdsson B Houghton S McNutt H Rymer and J Stix (eds) Encyclopedia of volcanoes. Academic Press San Diego: ISBN 012643140X, pp 877–895

    Google Scholar 

  • Delmelle P, Bernard A (2000b) Downstream composition changes of acidic volcanic waters discharged into the Banyupahit stream, Ijen caldera, Indonesia. J Volcanol Geotherm Res 97:55–75

    Google Scholar 

  • Delmelle P, Bernard A, Kusakabe M, Fischer T, Takano B (2000) Geochemistry of the magmatic-hydrothermal system of Kawah Ijen volcano, East Java, Indonesia. J Volcanol Geotherm Res 97:31–53

    Google Scholar 

  • Delmelle and Bernard (this issue) The remarkable chemistry of sulfur in volcanic acid crater lakes: a scientific tribute to Bokuichiro Takano and Minoru Kusakabe. In: Rouwet D, Christenson BW, Tassi F, Vandemeulebrouck J (eds) Volcanic lakes. Springer, Heidelberg

    Google Scholar 

  • Delmelle P, Henley RW, Opfergelt S, Detienne M (this issue) Summit acid crater lake and flank instability in composite volcanoes. In: Rouwet D, Christenson BW, Tassi F, Vandemeulebrouck J (eds) Volcanic lakes. Springer, Heidelberg

    Google Scholar 

  • Drake ET, Larson GL, Dymond J, Collier R (eds) (1990) Crater Lake: an ecosystem study. AAAS-Pacific Division, pp 69–80

    Google Scholar 

  • Evans WC, Kling GW, Tuttle ML, Tanyileke G, White LD (1993) Gas buildup in Lake Nyos, Cameroon: the recharge process and its consequences. Appl Geochem 8(3):207–221

    Google Scholar 

  • Fehn U, Snijder G, Varekamp JC (2002) Detection of recycled marine sediment components in crater lake fluids using 129I. J Volcanol Geotherm Res 115:451–460

    Google Scholar 

  • Fernández-Remolar DC, Morris RV, Gruener JE, Amils R, Knoll AH (2005) The Río Tinto Basin, Spain: mineralogy, sedimentary geobiology, and implications for interpretation of outcrop rocks at Meridiani Planum, Mars. Earth Plan Sc Lett 240(1):149–167

    Google Scholar 

  • Fulignato P, Gioncanda A, Sbrana A (1999) Rare earth element (REE) behaviour in the alteration facies of the active magmatic-hydrothermal system of Vulcano (Aeolian Islands, Italy). J Volcanol Geotherm Res 88:325–342

    Google Scholar 

  • Gammons CH, Wood SA, Li Y (2002) Complexation of the rare earth elements with aqueous chloride at 200  and 300 °C and saturated water vapor pressure. In: Hellmann, R., Wood, S.A. (eds) Water–rock interaction, ore deposits, and environmental geochemistry: a tribute to David A. Crerar. Geochemical Society Special Publication No. 7, pp 191–207

    Google Scholar 

  • Gammons CH, Wood SA, Jonas JP, Madison JP (2003) Geochemistry of the rare-earth elements and uranium in the acidic Berkeley Pit lake, Butte, Montana. Chem Geol 198:69–288

    Google Scholar 

  • Gammons CH, Wood SA, Pedrozo F, Varekamp JC, Nelson BJ, Shope CL, Baffico G (2005) Hydrogeochemistry and rare earth element behavior in a volcanically acidified watershed in Patagonia, Argentina. Chem Geol 222:249–267

    Google Scholar 

  • Giggenbach WF (1974) The chemistry of Crater Lake, Mt. Ruapehu (New Zealand) during and after the 1971 active period. NZ J Science 17:33–45

    Google Scholar 

  • Giggenbach WF (1988) Geothermal solute equilibria. Geochim Cosmochim Acta 52:2749–2765

    Google Scholar 

  • Giggenbach WF (1992a) Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth Plan Sc Lett 113:495–510

    Google Scholar 

  • Giggenbach WF (1992b) Magma degassing and mineral deposition in hydrothermal systems along convergent plate boundaries. SEG distinguished lecture. Econ Geol 87:1927–1944

    Google Scholar 

  • Giggenbach WF, Glover RB (1975) The use of chemical indicators in the surveillance of volcanic activity affecting the crater lake on Mt. Ruapehu. New Zealand. Bull Volcanol 39:70–81

    Google Scholar 

  • Gordon E, Corpuz G, Harada M, Punongbayan JT (2009) Combined electromagnetic, geochemical and thermal surveys of Taal Volcano (Philippines) during the period 2005–2006. Bull Volcanol 71:29–47

    Google Scholar 

  • Gunkel G, Beulker C, Grupe B, Viteri F (2008) Hazards of volcanic lakes: analysis of Lakes Quilotoa and Cuicocha, Ecuador. Adv Geosci 14:29–33

    Google Scholar 

  • Gyure RA, Konopka A, Brooks A, Doemel W (1990) Microbial sulfate reduction in acidic (pH ~ 3) strip mine lakes. FEMS Microbiol Ecol 73:193–202

    Google Scholar 

  • Haberyan KA, Hecky RE (1987) The late Pleistocene and Holocene stratigraphy and paleolimnology of Lakes Kivu and Tanganyika. Palaeogeogr Palaeoclimat Palaeoecol 62:169–19

    Google Scholar 

  • Hansell AL, Horwell CJ, Oppenheimer C (2006) The health hazards of volcanoes and geothermal areas. Occup Environ Med 63(2):149–156

    Google Scholar 

  • Hedenquist JW, Lowenstern JB (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature 370:519–527

    Google Scholar 

  • Heikens A, Sumarti S, van Bergen MJ, Widianarko B, Fokkert L, van Leeuwen K, Seinen W (2005a) The impact of the hyperacid Ijen Crater Lake: risks of excess fluoride to human health. Sci Total Env 346(1–3):56–69

    Google Scholar 

  • Heikens A, Widianarko B, Dewi IC, De Boer JL, Seinen W, van Leeuwen K (2005b) The impact of the hyperacid Ijen Crater Lake. Part I: concentrations of elements in crops and soil. Environ Geochem Health 27(5–6):409–418

    Google Scholar 

  • Henley RW (this issue) Hyperacidic volcanic lakes, metal sinks and magmatic gas expansion in arc volcanoes. In: Rouwet D, Christenson BW, Tassi F, Vandemeulebrouck J (eds) Volcanic lakes. Springer, Heidelberg

    Google Scholar 

  • Hurst AW, Bibby HM, Scott BJ, McGuinness MJ (1991) The heat source of Ruapehu Crater Lake; deductions from the energy and mass balances. J Volcanol Geotherm Res 46:1–20

    Google Scholar 

  • Kading T (2011) Attenuation of pollutants in Caviahue Lake, Copahue, Argentina, Master thesis, Wesleyan University, Middletown CT USA p 304

    Google Scholar 

  • Keeling CD, Mook WG, Tans PP (1979) Recent trends in the 13C/12C ratio of atmospheric carbon dioxide. Nature 277:121–123

    Google Scholar 

  • Kempter KA, Rowe GL (2000) Leakage of active crater lake brine through the north flank at Rincon de la Vieja volcano, northwest Costa Rica, and implications for crater collapse. J Volcanol Geotherm Res 97:143–159

    Google Scholar 

  • Kling GW, Clark M, Compton HR, Devine JD, Evans WC, Humphrey AM, Lockwood JP, Tuttle ML (1987) The 1986 Lake Nyos gas disaster, Cameroon, West Africa. Science 236:169–175

    Google Scholar 

  • Kling GW, Evans WC, Tanyileke GZ (this issue) The comparative limnology of Lakes Nyos and Monoun, Cameroon. In: Rouwet D, Christenson BW, Tassi F, Vandemeulebrouck J (eds) Volcanic lakes. Springer, Heidelberg

    Google Scholar 

  • KikawadaY Oi T, Honda T, Ossaka T, Kakihana H (1993) Lanthanoid abundances of acidic hot spring and crater lake waters in the Kusatsu—Shirane volcano region, Japan. Geochem J 27:19–33

    Google Scholar 

  • Kikawada Y, Ossaka T, Oi T, Honda T (2001) Experimental studies on the mobility of lanthanides accompanying alteration of andesite by acidic hot spring water. Chem Geol 176:137–149

    Google Scholar 

  • Kusakabe M (this issue) Evolution of CO2 content in Lakes Nyos and Monoun, and sub-lacustrine CO2-recharge system at Lake Nyos as envisaged from C/3He ratios in noble gas signatures. In: Rouwet D, Christenson BW, Tassi F, Vandemeulebrouck J (eds) Volcanic lakes. Springer, Heidelberg

    Google Scholar 

  • Kusakabe M, Hayashi N, Kobayashi T (1986) Genetic environments of the banded sulfur sediments at the Tateyama Volcano, Japan. J Geophys Res (Solid Earth) 91(B12):12159–12166. doi:10.1029/JB091iB12p12159

    Google Scholar 

  • Kusakabe M, Komoda Y, Takano B, Abiko T (2000) Sulfur isotope effects in the disproportionation reaction of sulfur dioxide in hydrothermal fluids: implications for the δ34S variations of dissolved bisulfate and elemental sulfur from active crater lakes. J Volcanol Geotherm Res 97:287–308

    Google Scholar 

  • Lefkowitz JL (2012) A tale of two lakes: the Newberry twin crater lakes, OR. BA thesis, Wesleyan University, Middletown CT, pp 203

    Google Scholar 

  • López DL, Ransom L, Pérez N, Hernández P, Monterrosa J (2004) Dynamics of diffuse degassing at Ilopango Caldera, El Salvador. In: Rose WI, Bommer JJ, López DL, Carr MJ and Major JJ (eds) Natural hazards in El Salvador, Geol Soc of America Special Paper No. 375:191–202

    Google Scholar 

  • López DL, Ransom L, Monterrosa J, Soriano T, Barahona F, Olmos R, Bundschuh J (2009) Volcanic arsenic and boron pollution of Ilopango Lake, El Salvador. In: Bundschuh J, Armienta M, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwater of Latin America, Taylor and Francis, Cambridge, pp 129–143

    Google Scholar 

  • López DL, Bundshuh J, Birkle P, Armienta MA, Cumbal L, Sracek O, Cornejo L, Ormachea M (2012) Arsenic in volcanic geothermal fluids of Latin America. Science Total Env 429:57–75

    Google Scholar 

  • Löhr AJ, Bogaard TA, Heikens A, Hendriks MR, Sumarti S, Van Bergen MJ, Van Gestel CA, Van Straalen NM, Vroon PZ, Widianarko B (2005) Natural pollution caused by the extremely acidic crater lake Kawah Ijen, East Java. Indonesia. Environ Sci Pollut Res Int 12(2):89–95

    Google Scholar 

  • Luhr JF, Carmichael ISE, Varekamp JC (1984) The 1982 eruptions of El Chichón volcano, Chiapas, Mexico: mineralogy and petrology of the anhydrite-bearing pumices. J Volcanol Geotherm Res 23:69–108

    Google Scholar 

  • Marini L, Vetuschi Zuccolini M, Saldi G (2003) The bimodal pH distribution of volcanic lake waters. J Volcanol Geotherm Res 121(1–2):83–98

    Google Scholar 

  • Martínez M (2008) Geochemical evolution of the acid crater lake of Poás Volcano (Costa Rica): insights into volcanic-hydrothermal processes. PhD thesis, University of Utrecht, the Netherlands

    Google Scholar 

  • Martínez M, Fernández E, Valdés J, Barboza V, Van der Laat R, Duarte E, Malavassi E, Sandoval L, Barquero J, Marino T (2000) Chemical evolution and activity of the active crater lake of Poás volcano, Costa Rica, 1993-1997. J Volcanol Geotherm Res 97:127–141

    Google Scholar 

  • Martini M, Giannini L, Prati F, Tassi F, Capaccioni B, Iozzelli P (1994) Chemical characters of crater lakes in the Azores and Italy: the anomaly of Lake Albano. Geochem J 28(3):173–184

    Google Scholar 

  • Martini F, Tassi F, Vaselli O, Del Potro R, Martínez M, Van der Laat R, Fernández E (2010) Geophysical, geochemical and geodetical signals of reawakening at Turrialba volcano (Costa Rica) after almost 150 years of quiescence. J Volcanol Geotherm Res 198(3):416–432

    Google Scholar 

  • McKnight DM, Briant A, Kimball A, Runkel RL (2001) pH dependence of iron photo reduction in a rocky mountain stream affected by acid mine drainage. Hydrol Process 15:1979–1992. doi:10.1002/hyp.251

    Google Scholar 

  • McManus J, Collier RW, Chen CTA, Dymond J (1992) Physical properties of Crater Lake, Oregon: a method for the determination of a conductivity- and temperature-dependent expression for salinity. Limnol Ocean 37(1):41–53

    Google Scholar 

  • Michard A (1989) Rare earth element systematics in hydrothermal fluids. Geochim Cosmochim Acta 53:745–750

    Google Scholar 

  • Miyabuchi Y, Terada A (2009) Subaqueous geothermal activity revealed by lacustrine sediments of the acidic Nakadake crater lake, Aso Volcano, Japan. J Volcanol Geotherm Res 187:140–145

    Google Scholar 

  • Morgan JW, Wandless GA (1980) Rare earth element distribution in some hydrothermal minerals: evidence for crystallographic control. Geochim Cosmochim Acta 44:973–980

    Google Scholar 

  • Morton-Bermea O, Armienta MA, Ramos S (2010) Rare-earth element distribution in water from El Chichón Volcano Crater Lake, Chiapas Mexico. Geofís Int 49:43–54

    Google Scholar 

  • Mosello R, Arisci S, Bruni P (2004) Lake Bolsena (Central Italy): an updating study on its water chemistry. J Limnol 63(1):1–12

    Google Scholar 

  • Nordstrom DK, Alpers CN (1999) Geochemistry of acid mine waters. In: Plumlee GS, Logsdon MJ (eds) The environmental geochemistry of mineral deposits: processes, techniques, and health issues, Soc Econom Geol Rev Econom Geol 6A:pp 133–160

    Google Scholar 

  • Nordstrom DK, Alpers CN, Ptacek CJ, Blowes DW (2000) Negative pH and extremely acidic mine wastes from Iron Mountain, California. Environ Sci Technol 34:254–258

    Google Scholar 

  • Ohba T, Hirabayashi J, Nogami K (1994) Water, heat, and chloride budgets of the crater lake, Yugama at Kusatsu-Shirane volcano, Japan. Geochem J 28:217–231

    Google Scholar 

  • Ohba T, Hirabayashi J, Nogami K (2000) D/H and 18O/16O ratios of water in the crater lake at Kusatsu-Shirane volcano, Japan. J Volcanol Geotherm Res 97:329–346

    Google Scholar 

  • Ohba T, Hirabayashi J, Nogami K (2008) Temporal changes in the chemistry of lake water within Yugama Crater, Kusatsu-Shirane Volcano, Japan: Implications for the evolution of the magmatic hydrothermal system. J Volcanol Geotherm Res 178:131–144

    Google Scholar 

  • Oppenheimer C, Stevenson D (1989) Liquid sulphur lakes at Poás volcano. Nature 342:790–793

    Google Scholar 

  • Oyarzun R, Lillo J, Higueras P, Oyarzœn J, Maturana H (2004) Strong arsenic enrichment in sediments from the Elqui watershed, Northern Chile: industrial (gold mining at El Indio-Tambo district) vs. geologic processes. J Geochem Explor 84:53–64

    Google Scholar 

  • Parker SR, Gammons CH, Pedrozo FL, Wood SA (2008) Diel changes in metal concentrations in a geogenically acidic river: Río Agrio, Argentina. J Volcanol Geotherm Res 178:213–223. doi:0.1016/j.jvolgeores.2008.06.029

    Google Scholar 

  • Parkhurst DL, Appelo CAJ(1999) User’s guide to PHREEQC—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol Surv Water-Res Inv Rep 99-4259:312

    Google Scholar 

  • Pasternack GB, Varekamp JC (1994) The geochemistry of the Keli Mutu crater lakes, Flores, Indonesia. Geochem J 28:243–262

    Google Scholar 

  • Pasternack GB, Varekamp JC (1997) Volcanic lake systematics I. Physical constraints. Bull Volcanol 58:528–538

    Google Scholar 

  • Pedrozo FL, Kelly L, Díaz MM, Temporetti P, Baffico G, Kringel R, Friese K, Mages M, Geller W, Woelfl S (2001) First results on the water chemistry, algae and trophic status of Andean acidic lake system of volcanic origin in Patagonia (Lake Caviahue). Hydrobiologia 452:129–137

    Google Scholar 

  • Pedrozo FL, Temporetti P, Beamud SG, Diaz MM (2008) Volcanic nutrient inputs and trophic state of Lake Caviahue, Patagonia, Argentina. J Volcanol Geotherm Res 178:205–212

    Google Scholar 

  • Peiffer L, Taran YA, Lounejeva E, Solís-Pichardo G, Rouwet D, Bernard-Romero RA (2011) Tracing thermal aquifers of El Chichón volcano-hydrothermal system (Mexico) with 87Sr/86Sr, Ca/Sr and REE. J Volcanol Geotherm Res 205:55–66

    Google Scholar 

  • Pérez NM, Hernández PA, Padilla G, Nolasco D, Barrancos J, Melían G, Dionis S, Calvo D, Rodríguez F, Notsu K, Mori T, Kusakabe M, Arpa MC, Reniva P, Ibarra M (2011) Global CO2 emission from volcanic lakes. Geology 39:235–238. doi:10.1130/G31586.1

    Google Scholar 

  • Reed M, Rusk B, Palandri J (2013) The Butte magmatic-hydrothermal system: one fluid yields all alteration and veins. Econ Geol 108:1379–1396

    Google Scholar 

  • Romero L, Alonso H, Campano P, Fanfani L, Cidu R, Dadea C, Keegan T, Thornton I, Farago M (2003) Arsenic enrichment in waters and sediments of the Río Loa (Second Region, Chile). Appl Geochem 18:1399–1416

    Google Scholar 

  • Rouwet D, Ohba T (this issue) Isotope fractionation and HCl partitioning during evaporative degassing from active crater lakes. In: Rouwet D, Christenson BW, Tassi F, Vandemeulebrouck J (eds) Volcanic lakes. Springer, Heidelberg

    Google Scholar 

  • Rouwet D, Tassi F (2011) Geochemical monitoring of volcanic lakes. A generalized box model for active crater lakes. Ann Geophys 54. doi: 10.4401/ag-5035

  • Rouwet D, Taran YA, Inguaggiato S, Varley N, Santiago JA (2008) Hydrochemical dynamics of the “lake-spring” system in the crater of El Chichón volcano (Chiapas, Mexico). J Volcanol Geotherm Res 178:237–248

    Google Scholar 

  • Rouwet D, Taran Y, Varley N (2004) Dynamics and mass balance of El Chichón crater lake, Mexico. Geofís Int 43:427–434

    Google Scholar 

  • Rowe GL, Ohsawa S, Takano B, Brantley SL, Fernández JF, Barquero J (1992a) Using crater lake chemistry to predict volcanic activity at Poás Volcano, Costa Rica. Bull Volcanol 54:494–503

    Google Scholar 

  • Rowe GL, Brantley SL, Fernández M, Fernández JF, Borgia A, Barquero J (1992b) Fluid-volcano interaction in an active stratovolcano: the volcanic lake system of Poás Volcano, Costa Rica. J Volcanol Geotherm Res 49:23–51

    Google Scholar 

  • Samson IM, Wood SA (2005) The rare earth elements: Behaviour in hydrothermal fluids and concentration in hydrothermal mineral deposits, exclusive of alkaline settings. In: Linnen RL, Samson IM (eds) Rare-element geochemistry and mineral deposits: Geological Association of Canada, GAC short course notes, vol 17, pp 269–297

    Google Scholar 

  • Schaefer JR, Scott WE, Evans WC, Jorgenson J, McGimsey RG, Wang B (2008) The 2005 catastrophic acid crater lake drainage, lahar, and acidic aerosol formation at Mount Chiginagak volcano, Alaska, USA: field observations and preliminary water and vegetation chemistry results. Geochem Geophys Geosyst 9(7). doi:10.1029/2007GC001900

  • Schuiling RD (1998) Geochemical engineering-taking stock. J Geochem Explor 62:1–28

    Google Scholar 

  • Sriwana T, van Bergen MJ, Sumarti S, de Hoog JCM, Van Os BJ, Wahyuningsih R, Dam MAC (1998) Volcanogenic pollution by acid water discharges along Ciwidey River, West Java (Indonesia). J Geochem Explor 62:161–182

    Google Scholar 

  • Sriwana T, van Bergen MJ, Varekamp JC, Sumarti S, Takano B, Van Os BJH, Leng MJ (2000) Geochemistry of the acid Kawah Putih Lake, Patuha volcano, West Java, Indonesia. J Volcanol Geotherm Res 97:77–104

    Google Scholar 

  • Suchanek TH, Eagles-Smith CA, Slotton DG, Harner EJ, Adam DP (2008) Mercury in abiotic matrices of Clear Lake, California: human health and ecotoxicological implications. Ecol Appl 18(8 Suppl):A128–A157

    Google Scholar 

  • Symonds RB, Rose WI, Reed MH, Lichte FE, Finnegan DL (1987) Volatilization, transport and sublimation of metallic and non-metallic elements in high temperature gases at Merapi Volcano, Indonesia. Geochim Cosmochim Acta 51:083–2101

    Google Scholar 

  • Takano B (1987) Correlation of volcanic activity with sulfur oxyanion speciation in a crater lake. Science 235:1633–1635

    Google Scholar 

  • Takano B, Watanuki K (1990) Monitoring of volcanic eruptions at Yugama crater lake by aqueous sulfur oxyanions. J Volcanol Geotherm Res 40:71–87

    Google Scholar 

  • Takano B, Ohsawa S, Glover RB (1994a) Surveillance of Ruapehu crater lake, New Zealand, by aqueous polythionates. J Volcanol Geotherm Res 60:29–57

    Google Scholar 

  • Takano B, Saitoh H, Takano E (1994b) Geochemical implications of subaqueous molten sulfur at Yugama crater lake, Kusatsu-Shirane volcano, Japan. Geochem J 28:199–216

    Google Scholar 

  • Takano B, Fazlullin SM, Delmelle P (2000) Analytical cross check of major and minor constituents in active crater lakes. J Volcanol Geotherm Res 97:497–508

    Google Scholar 

  • Takano B, Suzuki K, Sugimori K, Ohba T, Fazlullin SM, Bernard A, Sumarti S, Sukhyar R, Hirabayashi M (2004) Bathymetric and geochemical investigation of Kawah Ijen Crater Lake, East Java, Indonesia. J Volcanol Geotherm Res 135:299–329

    Google Scholar 

  • Taran YA, Rouwet D (2008) Estimating thermal inflow to El Chichón crater lake using the energy budget, chemical and isotope balance approaches. J Volcanol Geotherm Res 175:472–481

    Google Scholar 

  • Taran Y, Rouwet D, Inguaggiato S, Aiuppa A (2008) Major and trace element geochemistry of neutral and acidic thermal springs at El Chichón volcano, Mexico. Implications for monitoring of the volcanic activity. J Volcanol Geotherm Res 178:224–236, doi:10.1016/j.volgeores.2008.06.030

  • Taran YA, Hedenquist JW, Korzhinsky MA, Tkachenko SI, Shmulovich KI (1995) Geochemistry of magmatic gases of Kudryavy volcano, Iturup, Kuril islands. Geochim Cosmochim Acta 59:1749–1761. doi:10.1016/0016-7037(95)00079-F

    Google Scholar 

  • Taran YA, Inguaggiato S, Cardellini C, Karpov G (2013) Posteruption chemical evolution of a volcanic caldera lake: Karymsky Lake, Kamchatka. Geophys Res Lett 40:5142–5146. doi:10.1002/grl.50961

    Google Scholar 

  • Tassi F, Rouwet D (2014) An overview of the structure, hazards, and methods of investigation of Nyos-type lakes from the geochemical perspective. J. Limnol 73(1):39–54

    Google Scholar 

  • Tassi F, Vaselli O, Capaccioni B, Giolito C, Duarte E, Fernandez E, Minisale A, Magro G (2005) The hydrothermal-volcanic system of Rincon de la Vieja volcano (Costa Rica): a combined (inorganic and organic) geochemical approach to understanding the origin of the fluid discharges and its possible application to volcanic surveillance. J Volcanol Geotherm Res 148(3):315–333

    Google Scholar 

  • Tassi F, Vaselli O, Fernández E, Duarte E, Martínez M, Delgado Huertas A, Bergamaschi F (2009a) Morphological and geochemical features of crater lakes in Costa Rica: an overview. J Limnol 68(2):193–205. doi:10.3274/JL09-68-2-04

    Google Scholar 

  • Tassi F, Vaselli O, Tedesco D, Montegrossi G, Darrah T, Cuoco E (2009b) Water and gas chemistry at Lake Kivu (DRC): geochemical evidence of vertical and horizontal heterogeneities in a multi basin structure. Geochem Geophys Geosyst 10(2). doi:10.1029/2008GC002191

  • Tedesco D, Tassi F, Vaselli O, Poreda RJ, Darrah T, Cuoco E, Yalire MM (2010) Gas isotopic signatures (He, C, and Ar) in the Lake Kivu region (western branch of the East African rift system): Geodynamic and volcanological implications. J Geophys Res 115(B01205)doi:10.1029/2008JB006227

  • Telford R, Barker P, Metcalfe S, Newton A (2004) Lacustrine responses to tephra deposition: examples from Mexico. Quat Sci Rev 23:2337–2353

    Google Scholar 

  • Todesco M, Rouwet D, Nespoli M, Mora-Amador RA (2012) To seep or not to seep? Some considerations regarding water infiltration in volcanic lakes. In: Proceedings, TOUGH symposium 2012 Lawrence Berkeley National Laboratory, Berkeley, California, September pp 17–19

    Google Scholar 

  • Tietze K, Geyh M, Muller H, Schröder L, Stahl W, Wehner H (1980) The genesis of the methane in Lake Kivu (Central Africa). Geol Rundschau 69:452–472

    Google Scholar 

  • van Rotterdam-Los AMD, Vriend SP, van Bergen MJ, van Gaans PFM (2008) The effect of naturally acidified irrigation water on agricultural volcanic soils. The case of Asembagis, Java. Indonesia. J Geochem Explor 96:53–68

    Google Scholar 

  • Varekamp JC (1988) Lake pollution modeling. J Geol Educat 36:4–9

    Google Scholar 

  • Varekamp JC (2003) Lake contamination models: evolution towards steady state. J Limnol 62:67–72

    Google Scholar 

  • Varekamp JC (2004) Copahue Volcano: a modern terrestrial analog for the opportunity landing site. Eos 85(41):401–407

    Google Scholar 

  • Varekamp JC (2008) The acidification of glacial Lake Caviahue, province of Neuquen, Argentina. J Volcanol Geotherm Res 178:184–196. doi:10.1016/j.jvolgeores.2008.06.016

    Google Scholar 

  • Varekamp JC, Waibel A (1987) Natural cause for mercury pollution at Clear Lake, California, and paleotectonic inferences. Geology 15:1018–1021

    Google Scholar 

  • Varekamp JC, Kreulen R (2000) The stable isotope geochemistry of volcanic lakes: examples from Indonesia. J Volcanol Geotherm Res 97:309–327

    Google Scholar 

  • Varekamp JC, Pasternack GB, Rowe GL (2000) Volcanic lake systematics II. Chemical constraints. J Volcanol Geotherm Res 97:161–180

    Google Scholar 

  • Varekamp JC, Ouimette A, Herman S, Delpino D, Bermúdez A (2001) The 1990–2000 eruptions of Copahue, Argentina: a ‘bee-hive volcano’ in turmoil. Geology 29:1059–1062

    Google Scholar 

  • Varekamp JC, Ouimette A, Kreulen R (2004) The magmato-hydrothermal system of Copahue volcano, Argentina. In: Wanty RB and Seal RR (eds) Proceeding of the 11th Water Rock Interaction Symposium, 1:215–218, Balkema Publishers, Leiden

    Google Scholar 

  • Varekamp JC, de Moor JM, Merrill MD, Colvin AS, Goss AR, Vroon PZ, Hilton DR (2006) The geochemistry and isotopic characteristics of the Caviahue Copahue volcanic complex, province of Neuquen, Argentina. GSA Special Paper 407:317–342

    Google Scholar 

  • Varekamp JC, Herman S, Ouimette A, Flynn K, Bermúdez A, Delpino D (2009) Naturally acid waters from Copahue volcano, Argentina. Appl Geochem 24:208–220

    Google Scholar 

  • Vaselli O, Tassi F, Minissale A, Montegrossi G, Duarte E, Fernández E (2003) Fumarole migration and fluid geochemistry at Poás volcano (Costa Rica) from 1998 to 2001. Geological Society, London, Special Public 213(1):247–262

    Google Scholar 

  • Verma MP (2000) Revised quartz solubility temperature dependence equation along the water-vapor saturation curve. In: Proceedings World Geothermal Congress 2000 Kyushu—Tohoku, Japan, May 28–June 10, pp. 1927–1932

    Google Scholar 

  • WHO (1996) Guidelines for drinking-water quality, 2nd edn. Switzerland, Geneva

    Google Scholar 

  • Wood SA (2003) The geochemistry of rare earth elements and yttrium in geothermal waters. In Simmons SF and Graham I (eds), Volcanic, geothermal, and ore-forming fluids: rulers and witnesses of processes within the earth. Soc Econ Geol Spec Publ, vol 10, 133–158

    Google Scholar 

  • Wood SA (2005) The aqueous geochemistry of zirconium, hafnium, niobium and tantalum. In Linnen RL and Samson IM (eds) Rare-element geochemistry and mineral deposits. Geological Association of Canada, GAC Short Course Notes 17:217–268

    Google Scholar 

  • Wood SA (2006a) The behavior of rare earth elements in naturally and anthropogenically acidified waters. J Alloys Comps 418:161–165

    Google Scholar 

  • Wood SA (2006b) Rare earth element systematics of acidic geothermal waters from the Taupo Volcanic Zone, New Zealand. J Geochem Explor 89:424–427

    Google Scholar 

  • Wood SA, Shannon WM (2003) Rare-earth elements in geothermal waters from Oregon, Nevada, and California. J Solid State Chem 171:246–253

    Google Scholar 

  • Zlotnicki J, Sasai Y, Toutain IO, Villacorte EU, Bernard A, Sabit JP, Gordon JM, Corpuz EG, Harada M, Punongbayan JT (2009) Combined electromagnetic, geochemical and thermal surveys of Taal Volcano (Philippines) during the period 2005–2006. Bull Volcanol 71:29–47. doi:10.1007/s00445-008-0205-2

Download references

Acknowledgments

The author has appreciated the input from his former students in our work on volcanic lakes over the years: Scott Herman, Gregory Pasternack, Andrew Ouimette, Conor Gately, Kathryn Flynn, Tristan Kading, and Jared Lefkowitz. Manfred van Bergen (Utrecht University, The Netherlands) has made unpublished papers, data, and ideas available for this summary, which is greatly appreciated. Discussions with many volcanic lake colleagues over the years have helped shape the ideas presented here. I thank NSF for their funding (Awards NSF EAR-0949376 and NSF RAPID-1331167) and the Wesleyan University Harold Stearns Endowed Chair fund for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan C. Varekamp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Varekamp, J.C. (2015). The Chemical Composition and Evolution of Volcanic Lakes. In: Rouwet, D., Christenson, B., Tassi, F., Vandemeulebrouck, J. (eds) Volcanic Lakes. Advances in Volcanology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36833-2_4

Download citation

Publish with us

Policies and ethics