Skip to main content

Summit Acid Crater Lakes and Flank Instability in Composite Volcanoes

  • Chapter
  • First Online:
Volcanic Lakes

Part of the book series: Advances in Volcanology ((VOLCAN))

Abstract

Volcanic landslides, including flank and sector collapses, constitute a major hazard in many parts of the world. While composite volcanoes are innately unstable, the presence of a hydrothermal system maintained by a magmatic source at depth is recognized as a key factor increasing the risk of failure. This relates to the formation of hydrothermally altered rock masses within the core and upper flanks of the volcano which leads to heterogeneous distribution of rock strength properties and pore fluid pressures. Here an emphasis is placed on acid crater lakes perched high on active volcanoes. By acting as a trap for magmatic heat and gas flows, these lakes localize extreme acid attack on their surrounds, thereby creating a source of instability. We outline how acid crater lakes form in relation to magmatic hydrothermal systems hosted within composite volcanoes, and describe the associated hydrothermal alteration and its relationships to flank instability. The sustainability of a volcanic slope is partly governed by the degree of rock alteration, which in turn reflects the time-integrated flux of acidic gases (SO2 and HCl) released from the subsurface magmatic source. Transient or longer-term changes in pore fluid pressure linked to hydrothermal system activity also readily affect the slope stability of composite volcanoes. Such fluctuations can be initiated by both magmatic and external non-magmatic processes such as major rainfall events and regional seismicity. Kawah Ijen hyper-acid crater lake, Indonesia, is used as a case study to illustrate the cascade of effects that may ensue following slope rupture linked to hydrothermal alteration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Belousov A, Belousova M, Voight B (1999) Multiple edifice failures, debris avalanches and associated eruptions in the Holocene history of Shiveluch volcano, Kamchatka, Russia. Bull Volcanol 61(5):324–342

    Article  Google Scholar 

  • Berger BR, Henley RW (2011) Magmatic-vapor expansion and the formation of high-sulfidation gold deposits: structural controls on hydrothermal alteration and ore mineralization. Ore Geol Rev 39(1–2):75–90

    Article  Google Scholar 

  • Capra L, Macías JL, Scott KM, Abrams M, Garduño-Monroy VH (2002) Debris avalanches and debris flows transformed from collapses in the Trans-Mexican Volcanic Belt, Mexico—behavior, and implications for hazard assessment. J Volcanol Geotherm Res 113(1–2):81–110

    Article  Google Scholar 

  • Carrasco-Núñez G, Vallance JW, Rose WI (1993) A voluminous avalanche-induced lahar from Citlaltépetl volcano, Mexico—implications for hazard assessment. J Volcanol Geotherm Res 59(1–2):35–46

    Article  Google Scholar 

  • Carrasco-Núñez G, Siebert L, Capra L (2011) Hazards from volcanic avalanches. In: Veress B, Szigethy J (eds) Horizons in Earth Science Research, Nova, p 199–227

    Google Scholar 

  • Christenson BW, Wood CP (1993) Evolution of a vent-hosted hydrothermal system beneath Ruapehu crater lake, New Zealand. Bull Volcanol 55(8):547–565

    Article  Google Scholar 

  • Christenson BW, Reyes AG, Young R, Moebis A, Sherburn S, Cole-Baker J, Britten K (2010) Cyclic processes and factors leading to phreatic eruption events: insights from the 25 September 2007 eruption through Ruapehu crater lake, New Zealand. J Volcanol Geotherm Res 191(1–2):15–32

    Article  Google Scholar 

  • Day SJ (1996) Hydrothermal pore fluid pressure and the stability of porous, permeable volcanoes. In: McGuire WJ, Jones AP, Neuberg J (eds) Volcano instability on the Earth and other planets. Geological Society, Special Publications, London, pp 77–93

    Google Scholar 

  • del Potro R, Hurlimann M (2009) The decrease in the shear strength of volcanic materials with argillic hydrothermal alteration, insights from the summit region of Teide stratovolcano, Tenerife. Eng Geol 104(1–2):135–143

    Article  Google Scholar 

  • Delmelle P, Bernard A (1994) Geochemistry, mineralogy and chemical modeling of the acid crater lake of Kawah Ijen Volcano, Indonesia. Geochim Cosmochim Acta 58(11):2445–2460

    Article  Google Scholar 

  • Delmelle P, Bernard A (2000) Downstream composition changes of acidic volcanic waters discharged into the Banyupahit stream, Ijen caldera, Indonesia. J Volcanol Geotherm Res 97(1–4):55–75

    Article  Google Scholar 

  • Delmelle P, Bernard A (2015) The remarkable chemistry of sulfur in volcanic acid crater lakes: a scientific tribute to Bokuichiro Takano and Minoru Kusakabe. This volume

    Google Scholar 

  • Delmelle P, Bernard A, Kusakabe M, Fischer TP, Takano B (2000) Geochemistry of the magmatic–hydrothermal system of Kawah Ijen volcano, East Java, Indonesia. J Volcanol Geotherm Res 97(1–4):31–53

    Article  Google Scholar 

  • Finn CA, Sisson TW, Deszcz-Pan M (2001) Aerogeophysical measurements of collapse-prone hydrothermally altered zones at Mount Rainier volcano. Nature 409(6820):600–603

    Article  Google Scholar 

  • Giggenbach WF (1974) The chemistry of crater lake, Mt Ruapehu (New Zealand) during and after the 1971 active period. NZJ Sci 17:33–45

    Google Scholar 

  • Hemley JJ, Hostetle PB, Gude AJ, Mountjoy WT (1969) Some stability relations of alunite. Econ Geol 64(6):599–612

    Article  Google Scholar 

  • Hengeveld GJN (1920) De mogelijkheid en de plaats van den bouw van een nieuwe sluis bij het kratermeer Kawah Idjen. Mededelingen en rapporten van het departement der burgelijke openbare werken; Geologische onderzoekingen ten behoeve van’s lands waterstaat-, gewestelijke- en gemeentewerken in Nederlandsch-Indie. Weltevreden:93–118

    Google Scholar 

  • Henley RW (2015) Hyperacidic volcanic lakes, metal sinks and continuous gas streaming in arc volcanoes. This volume

    Google Scholar 

  • Henley RW, Berger BR (2011) Magmatic-vapor expansion and the formation of high-sulfidation gold deposits: chemical controls on alteration and mineralization. Ore Geol Rev 39(1–2):63–74

    Article  Google Scholar 

  • Henley RW, Berger BR (2013) Nature’s refineries: metals and metalloids in arc volcanoes. Earth Sci Rev 125:146–170

    Google Scholar 

  • Henley RW, Ellis AJ (1983) Geothermal systems, ancient and modern: a geochemical review. Earth Sci Rev 19:1–50

    Article  Google Scholar 

  • Henley RW, McNabb A (1978) Magmatic vapor plumes and groundwater interaction in porphyry copper emplacement. Econ Geol 73(1):1–20

    Article  Google Scholar 

  • Henley RW, Truesdell AH, Barton PB, Whitney JA (1984) Fluid-mineral equilibria in hydrothermal systems. In: Roberston JM (ed) Reviews in Economic Geology. Society of Economic Geologists, Socorro

    Google Scholar 

  • Hoek E, Bray JW (1977) Rock slope engineering. The Institution of Mining and Metallurgy, Taylor & Francis, London

    Google Scholar 

  • Hubbert MK, Rubey WW (1959) Role of fluid pressure in mechanics of overthrust faulting. I. Mechanics of fluid-filled porous solids and its application to overthrust faulting. Geol Soc Am Bull 70(2):115–166

    Article  Google Scholar 

  • Hurst AW, Bibby HM, Scott BJ, McGuinness MJ (1991) The heat source of Ruapehu crater lake; deductions from the energy and mass balances. J Volcanol Geotherm Res 46:1–20

    Article  Google Scholar 

  • Hurwitz S, Kipp KL, Ingebritsen SE, Reid ME (2003) Groundwater flow, heat transport, and water table position within volcanic edifices: implications for volcanic processes in the Cascade Range. J Geophys Res Solid Earth 108(B12):2557. doi:10.1029/2003JB002565

    Article  Google Scholar 

  • Ingebritsen SE, Mariner RH (2010) Hydrothermal heat discharge in the Cascade Range, northwestern United States. J Volcanol Geotherm Res 196(3–4):208–218

    Article  Google Scholar 

  • Jaeger JC, Cook NGW (1976) Fundamentals of rock mechanics. Science paperbacks

    Google Scholar 

  • John DA, Sisson TW, Breit GN, Rye RO, Vallance JW (2008) Characteristics, extent and origin of hydrothermal alteration at Mount Rainier Volcano, Cascades Arc, USA: implications for debris-flow hazards and mineral deposits. J Volcanol Geotherm Res 175(3):289–314

    Article  Google Scholar 

  • Kempter KA, Rowe GL (2000) Leakage of Active crater lake brine through the north flank at Rincon de la Vieja volcano, northwest Costa Rica, and implications for crater collapse. J Volcanol Geotherm Res 97(1–4):143–159

    Article  Google Scholar 

  • Lighthill J (1986) The recently recognized failure of predictability in newtonian dynamics. Proc Roy Soc Lond Ser Math Phys Eng Sci 407(1832):35–50

    Article  Google Scholar 

  • López DL, Williams SN (1993) Catastrophic volcanic collapse—relation to hydrothermal processes. Science 260(5115):1794–1796

    Article  Google Scholar 

  • Lowell RP, Vancappellen P, Germanovich LN (1993) Silica precipitation in fractures and the evolution of permeability in hydrothermal upflow zones. Science 260(5105):192–194

    Article  Google Scholar 

  • Martínez M, Fernández E, Sáenz W, van Bergen MJ, Ayres G, Pacheco JF, Brenes J, Avard G, Malavassi E (2012) Connections between hyper-acid crater lakes and flank springs: new evidence from Rincón de la Vieja volcano (Costa Rica). EGU General Assembly 2012, Vienna

    Google Scholar 

  • Mauri G (2010) Multi-scale analysis of multiparameter geophysical and geochemical data from active volcanic systems, PhD thesis, Simon Fraser University, Vancouver

    Google Scholar 

  • Mazot A, Bernard A, Fischer T, Inguaggiato S, Sutawidjaja IS (2008) Chemical evolution of thermal waters and changes in the hydrothermal system of Papandayan volcano (West Java, Indonesia) after the November 2002 eruption. J Volcanol Geotherm Res 178(2):276–286

    Article  Google Scholar 

  • McGuire WJ (2003) Volcano instability and lateral collapse. Revista 1:33–45

    Google Scholar 

  • Moore JN, Christenson BW, Allis RG, Browne PRL, Lutz SJ (2004) The mineralogical consequences and behavior of descending acid-sulfate waters: an example from the Karaha—Telaga Bodas geothermal system, Indonesia. Can Mineral 42:1483–1499

    Article  Google Scholar 

  • Moore JN, Allis RG, Nemcok M, Powell TS, Bruton CJ, Wannamaker PE, Raharjo IB, Norman DI (2008) The evolution of volcano-hosted geothermal systems based on deep wells from Karaha-Telaga Bodas, Indonesia. Am J Sci 308(1):1–48

    Article  Google Scholar 

  • Newhall CG, Albano SE, Matsumoto N, Sandoval T (2001) Roles of groundwater in volcanic unrest. J Geol Soc Philippines 56:69–84

    Google Scholar 

  • Newhall CG, Power JA, Punongbayan RS (2002) Pinatubo eruption—“to make grow”. Science 295(5558):1241–1242

    Article  Google Scholar 

  • Norini G, Lagmay AMF (2005) Deformed symmetrical volcanoes. Geology 33(7):605–608

    Article  Google Scholar 

  • Ohba T, Kitade Y (2005) Subvolcanic hydrothermal systems: implications from hydrothermal minerals in hydrovolcanic ash. J Volcanol Geotherm Res 145(3–4):249–262

    Article  Google Scholar 

  • Ohba T, Hirabayashi JI, Nogami K (1994) Water, heat and chloride budget of the crater lake Yugama at Kusatsu-Shirane volcano, Japan. Geochem J 28:217–231

    Article  Google Scholar 

  • Ohba T, Hirabayashi J, Nogami K (2000) D/H and O-18/O-16 ratios of water in the crater lake at Kusatsu-Shirane volcano, Japan. J Volcanol Geotherm Res 97(1–4):329–346

    Article  Google Scholar 

  • Oppenheimer C, Scaillet B, Martin RS (2011) Sulfur degassing from volcanoes: source conditions, surveillance, plume Chemistry and Earth system impacts. Rev Mineral Geochem 73(1):363–421

    Article  Google Scholar 

  • Palmer SCJ (2009) Hydrogeochemistry of the upper Banyu Pahit River valley, Kawah Ijen volcano, Indonesia, MSc thesis, McGill University, Montreal

    Google Scholar 

  • Reid ME (2004) Massive collapse of volcano edifices triggered by hydrothermal pressurization. Geology 32(5):373–376

    Article  Google Scholar 

  • Reid ME, Sisson TW, Brien DL (2001) Volcano collapse promoted by hydrothermal alteration and edifice shape, Mount Rainier, Washington. Geology 29(9):779–782

    Article  Google Scholar 

  • Reid ME, Keith TEC, Kayen RE, Iverson NR, Iverson RM, Brien DL (2010) Volcano collapse promoted by progressive strength reduction: new data from Mount St. Helens. Bull Volcanol 72(6):761–766

    Article  Google Scholar 

  • Reyes AG (1990) Petrology of Philippine geothermal systems and the application of alteration mineralogy to their assessment. J Volcanol Geotherm Res 43(1–4):279–309

    Article  Google Scholar 

  • Reyes AG (1991) Mineralogy, distribution and origin of acid alteration in Philippine geothermal systems. Geological Survey of Japan Report, Tsukuba

    Google Scholar 

  • Reyes AG, Giggenbach WF, Saleras JRM, Salonga ND, Vergara MC (1993) Petrology and geochemistry of Alto Peak, a vapor-cored hydrothermal system, Leyte Province, Philippines. Geothermics 22:479–519

    Article  Google Scholar 

  • Rouwet D, Mora-Amador RA, Ramírez-Umaña CJ, González G (2010) Seepage of “aggressive” fluids reduce volcano flank stability: the Irazú and Turrialba case, Costa Rica. IAVCEI commission on volcanic lakes 7 workshop, Costa Rica

    Google Scholar 

  • Rowe GL, Brantley SL (1993) Estimation of the dissolution rates of andesitic glass, plagioclase and pyroxene in a flank aquifer of Poás Volcano, Costa Rica. Chem Geol 105(1–3):71–87

    Article  Google Scholar 

  • Rowe GL, Brantley SL, Fernández M, Fernández JF, Barquero J, Borgia A (1992) Fluid-volcano interaction in an active stratovolcano: the crater lake system of Poás volcano, Costa-Rica. J Volcanol Geotherm Res 49:23–51

    Article  Google Scholar 

  • Rowe GL, Brantley SL, Fernández M, Borgia A (1995) The chemical and hydrologic structure of Poás Volcano, Costa Rica. J Volcanol Geotherm Res 64(3–4):233–270

    Article  Google Scholar 

  • Sanford WE, Konikow LF, Rowe GL, Brantley SL (1995) Groundwater transport of crater-lake brine at Poás volcano, Costa Rica. J Volcanol Geotherm Res 64(3–4):269–293

    Article  Google Scholar 

  • Scott KM, Vallance JW, Pringle PT (1995) Sedimentology, behavior, and hazards of debris flows at Mount Rainier. USGS Professional Paper, Washington 1547

    Google Scholar 

  • Scott KM, Vallance JW, Kerle N, Macias JL, Strauch W, Devoli G (2005) Catastrophic precipitation-triggered lahar at Casita volcano, Nicaragua: occurrence, bulking and transformation. Earth Surf Proc Land 30(1):59–79

    Article  Google Scholar 

  • Shea T, van Wyk de Vries B (2010) Collapsing volcanoes: the sleeping giants’ threat. Geol Today 26(2):72–77

    Article  Google Scholar 

  • Siebert L (1984) Large volcanic debris avalanches—characteristics of source areas, deposits, and associated eruptions. J Volcanol Geotherm Res 22(3–4):163–197

    Article  Google Scholar 

  • Siebert L, Glicken H, Ui T (1987) Volcanic hazards from Bezymianny- and Bandaï-type eruptions. Bull Volcanol 49:435–459

    Article  Google Scholar 

  • Stoffregen R (1987) Genesis of acid-sulfate alteration and Au-Cu-Ag mineralization at Summitville, Colorado. Econom Geol 82(6):1575–1591

    Article  Google Scholar 

  • Symonds RB, Gerlach TM, Reed MH (2001) Magmatic gas scrubbing: implications for volcano monitoring. J Volcanol Geotherm Res 108(1–4):303–341

    Article  Google Scholar 

  • Takano B, Suzuki K, Sugimori K, Ohba T, Fazlullin SM, Bernard A, Sumarti S, Sukhyar R, Hirabayashi M (2004) Bathymetric and geochemical investigation of Kawah Ijen crater lake, East Java, Indonesia. J Volcanol Geotherm Res 135(4):299–329

    Article  Google Scholar 

  • Taleb NN (2010) The black swan: the impact of the highly improbable. Random house trade paperbacks

    Google Scholar 

  • Taran Y, Rouwet D, Inguaggiato S, Aiuppa A (2008) Major and trace element geochemistry of neutral and acidic thermal springs at El Chichón volcano, Mexico implications for monitoring of the volcanic activity. J Volcanol Geotherm Res 178(2):224–236

    Article  Google Scholar 

  • Ui T, Yamamoto H, Suzukikamata K (1986) Characterization of debris avalanche deposits in Japan. J Volcanol Geotherm Res 29(1–4):231–243

    Article  Google Scholar 

  • Vallance JW, Scott KM (1997) The Osceola Mudflow from Mount Rainier: sedimentology and hazard implications of a huge clay-rich debris flow. Geol Soc Am Bull 109(2):143–163

    Article  Google Scholar 

  • Vallance JW, Siebert L, Rose WI, Giron JR, Banks NG (1995) Edifice collapse and related hazards in Guatemala. J Volcanol Geotherm Res 66(1–4):337–355

    Article  Google Scholar 

  • van den Boorn SHJM (2008) Silicon isotopes and the origin of Archaean cherts, PhD thesis, University of Utrecht, Utrecht

    Google Scholar 

  • van Hinsberg V, Berlo K, Sumarti S, van Bergen M, Williams-Jones A (2010a) Extreme alteration by hyperacidic brines at Kawah Ijen volcano, East Java, Indonesia: II metasomatic imprint and element fluxes. J Volcanol Geotherm Res 196(3–4):169–184

    Article  Google Scholar 

  • van Hinsberg V, Berlo K, van Bergen M, Williams-Jones A (2010b) Extreme alteration by hyperacidic brines at Kawah ben volcano, East Java, Indonesia I Textural and mineralogical imprint. J Volcanol Geotherm Res 198(1–2):253–263

    Article  Google Scholar 

  • van Wyk de Vries B, Francis PW (1997) Catastrophic collapse at stratovolcanoes induced by gradual volcano spreading. Nature 387(6631):387–390

    Article  Google Scholar 

  • Varekamp JC, Ouimette AP, Herman SW, Bermúdez A, Delpino D (2001) Hydrothermal element fluxes from Copahue, Argentina: a “beehive” volcano in turmoil. Geology 29(11):1059–1062

    Article  Google Scholar 

  • Vinciguerra S, Elsworth D, Malone S (2005) The 1980 pressure response and flank failure of Mount St. Helens (USA) inferred from seismic scaling exponents. J Volcanol Geotherm Res 144:155–168

    Article  Google Scholar 

  • Voight B, Komorowski J-C, Norton GE, Belousov AB, Belousova MG, Boudon G, Fransis PW, Franz W, Heinrich P, Sparks RSJ, Young SR (2002) The 26 December (boxing day) 1997 sector collapse and debris avalanche at Soufrière Hills Volcano, Montserrat. In: Druitt TH, Kokelaar BP (eds) The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999. Memoirs, Geological Society, London, pp 363–407

    Google Scholar 

  • Watters RJ, Zimbelman DR, Bowman SD, Crowley JK (2000) Rock mass strength assessment and significance to edifice stability, Mount Rainier and Mount Hood, cascade range volcanoes. Pure Appl Geophys 157(6–8):957–976

    Article  Google Scholar 

  • Witham CS (2005) Volcanic disasters and incidents: a new database. J Volcanol Geotherm Res 148(3–4):191

    Article  Google Scholar 

  • Wood CP (1994) Mineralogy at the magma-hydrothermal system interface in andesite volcanoes, New Zealand. Geology 22(1):75–78

    Article  Google Scholar 

  • Zimbelman DR, Watters RJ, Firth IR, Breit GN, Carrasco-Núñez G (2004) Stratovolcano stability assessment methods and results from Citlaltepetl, Mexico. Bull Volcanol 66(1):66–79

    Article  Google Scholar 

  • Zimbelman DR, Rye RO, Breit GN (2005) Origin of secondary sulfate minerals on active andesitic stratovolcanoes. Chem Geol 215(1–4):37–60

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Belgian Fonds de la Recherche Scientifique (FNRS) MIS-Ulysse grant F.6001.11 to P.D., Postdoctoral Researcher grant 1.7.048.09.F to S.O. and Doctoral studentship to M. D. R.W.H. thanks the Australian Research Council for continued support of studies of magmatic hydrothermal systems. J. Moore kindly provided original graphics for the Telega-Bodas hydrothermal system and constructive comments on an early draft of this chapter. We are very grateful to P. Ayris for producing some of the diagrams. We thank R. del Potro for his critical and useful comments in review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Delmelle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Delmelle, P., Henley, R.W., Opfergelt, S., Detienne, M. (2015). Summit Acid Crater Lakes and Flank Instability in Composite Volcanoes. In: Rouwet, D., Christenson, B., Tassi, F., Vandemeulebrouck, J. (eds) Volcanic Lakes. Advances in Volcanology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36833-2_12

Download citation

Publish with us

Policies and ethics