Skip to main content

Nutrition, Histone Epigenetic Marks, and Disease

  • Chapter
  • First Online:
Environmental Epigenomics in Health and Disease

Part of the book series: Epigenetics and Human Health ((EHH))

Abstract

The dietary intake of essential nutrients and bioactive food compounds is a process that occurs on a daily basis for the entire life span. Therefore, your diet has a great potential to cause changes in the epigenome. Known histone modifications include acetylation, methylation, biotinylation, poly(ADP-ribosylation), ubiquitination, and sumoylation. Some of these modifications depend directly on dietary nutrients. For other modifications, bioactive dietary compounds may alter the activities of enzymes that establish or remove histone marks, thereby altering the epigenome. This chapter provides an overview of diet-dependent epigenomic marks in histones and their links with human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Avy :

Viable yellow agouti

CoA:

Coenzyme A

DNMT1:

DNA methyltransferase 1

FAD:

Flavin adenine dinucleotide

H3K4me3:

K4-trimethylated histone H3

H3K9ac:

K9-acetylated histone H3

H3K9me2:

K9-dimethylated histone H3

H3K9me3:

K9-trimethylated histone H3

H4K5ac:

K5-acetylated histone H4

H4K8ac:

K8-acetylated histone K12

H4K12ac:

K12-acetylated histone H4

H4K12bio:

K12-biotinylated histone

H4H4K16ac:

K16-acetylated histone H4

H4K20me3:

K20-trimethylated histone H4

HAT:

Histone acetyl transferase

HDAC:

Histone deacetylase

HLCS:

Holocarboxylase synthetase

HMT:

Histone methyl transferase

JmjC:

Jumonji C

K:

Lysine

LSD1:

Lysine-specific demethylase 1

SET:

Suppressor of variegation enhancer of zeste trithorax

Sir2:

Silent information regulator 2

References

  • Albert M, Helin K (2010) Histone methyltransferases in cancer. Semin Cell Dev Biol 21:209–220

    Article  PubMed  CAS  Google Scholar 

  • Bailey LB (2007) Folic acid. In: Zempleni J, Rucker RB, McCormick DB, Suttie JW (eds) Handbook of vitamins. Taylor & Francis, Boca Raton, pp 385–412

    Google Scholar 

  • Bailey LM, Ivanov RA, Wallace JC, Polyak SW (2008) Artifactual detection of biotin on histones by streptavidin. Anal Biochem 373:71–77

    Article  PubMed  CAS  Google Scholar 

  • Ballard TD, Wolff J, Griffin JB, Stanley JS, Sv C, Zempleni J (2002) Biotinidase catalyzes debiotinylation of histones. Eur J Nutr 41:78–84

    Article  PubMed  CAS  Google Scholar 

  • Bao B, Rodriguez-Melendez R, Wijeratne SS, Zempleni J (2010) Biotin regulates the expression of holocarboxylase synthetase in the miR-539 pathway in HEK-293 cells. J Nutr 140:1546–1551

    Article  PubMed  CAS  Google Scholar 

  • Bao B, Pestinger V, Hassan YI, Borgstahl GE, Kolar C, Zempleni J (2011a) Holocarboxylase synthetase is a chromatin protein and interacts directly with histone H3 to mediate biotinylation of K9 and K18. J Nutr Biochem 22:470–475

    Article  PubMed  CAS  Google Scholar 

  • Bao B, Rodriguez-Melendez R, Zempleni J (2011b) Cytosine methylation in miR-153 gene promoters increases the expression of holocarboxylase synthetase, thereby increasing the abundance of histone H4 biotinylation marks in HEK-293 human kidney cells. J Nutr Biochem 23(6):635–639

    Article  PubMed  CAS  Google Scholar 

  • Bedford MT, Clarke SG (2009) Protein arginine methylation in mammals: who, what, and why. Mol Cell 33:1–13

    Article  PubMed  CAS  Google Scholar 

  • Boily G, Seifert EL, Bevilacqua L, He XH, Sabourin G, Estey C, Moffat C, Crawford S, Saliba S, Jardine K, Xuan J, Evans M, Harper ME, McBurney MW (2008) SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS One 3:e1759

    Article  PubMed  CAS  Google Scholar 

  • Botto LD, Mulinare J, Erickson JD (2003) Do multivitamin or folic acid supplements reduce the risk for congenital heart defects? Evidence and gaps. Am J Med Genet A 121A:95–101

    Article  PubMed  Google Scholar 

  • Boulikas T (1988) At least 60 ADP-ribosylated variant histones are present in nuclei from dimethylsulfate-treated and untreated cells. EMBO J 7:57–67

    PubMed  CAS  Google Scholar 

  • Boulikas T (1989) DNA strand breaks alter histone ADP-ribosylation. Proc Natl Acad Sci USA 86:3499–3503

    Article  PubMed  CAS  Google Scholar 

  • Boulikas T (1990) Poly(ADP-ribosylated) histones in chromatin replication. J Biol Chem 265:14638–14647

    PubMed  CAS  Google Scholar 

  • Boulikas T (1993) Poly(ADP-ribosyl)ation, DNA strand breaks, chromatin and cancer. Toxicol Lett 67:129–150

    Article  PubMed  CAS  Google Scholar 

  • Boulikas T, Bastin B, Boulikas P, Dupuis G (1990) Increase in histone poly(ADP-ribosylation) in mitogen-activated lymphoid cells. Exp Cell Res 187:77–84

    Article  PubMed  CAS  Google Scholar 

  • Briggs SD, Xiao T, Sun ZW, Caldwell JA, Shabanowitz J, Hunt DF, Allis CD, Strahl BD (2002) Gene silencing: trans-histone regulatory pathway in chromatin. Nature 418:498

    Article  PubMed  CAS  Google Scholar 

  • Brunmeir R, Lagger S, Simboeck E, Sawicka A, Egger G, Hagelkruys A, Zhang Y, Matthias P, Miller WJ, Seiser C (2010a) Correction: epigenetic regulation of a murine retrotransposon by a dual histone modification mark. PLoS Genet 7

    Google Scholar 

  • Brunmeir R, Lagger S, Simboeck E, Sawicka A, Egger G, Hagelkruys A, Zhang Y, Matthias P, Miller WJ, Seiser C (2010b) Epigenetic regulation of a murine retrotransposon by a dual histone modification mark. PLoS Genet 6:e1000927

    Article  PubMed  CAS  Google Scholar 

  • Buzdin A, Kovalskaya-Alexandrova E, Gogvadze E, Sverdlov E (2006) GREM, a technique for genome-wide isolation and quantitative analysis of promoter active repeats. Nucleic Acids Res 34:e67

    Article  PubMed  CAS  Google Scholar 

  • Camporeale G, Shubert EE, Sarath G, Cerny R, Zempleni J (2004) K8 and K12 are biotinylated in human histone H4. Eur J Biochem 271:2257–2263

    Article  PubMed  CAS  Google Scholar 

  • Camporeale G, Giordano E, Rendina R, Zempleni J, Eissenberg JC (2006) Drosophila holocarboxylase synthetase is a chromosomal protein required for normal histone biotinylation, gene transcription patterns, lifespan and heat tolerance. J Nutr 136:2735–2742

    PubMed  CAS  Google Scholar 

  • Camporeale G, Oommen AM, Griffin JB, Sarath G, Zempleni J (2007a) K12-biotinylated histone H4 marks heterochromatin in human lymphoblastoma cells. J Nutr Biochem 18:760–768

    Article  PubMed  CAS  Google Scholar 

  • Camporeale G, Zempleni J, Eissenberg JC (2007b) Susceptibility to heat stress and aberrant gene expression patterns in holocarboxylase synthetase-deficient Drosophila melanogaster are caused by decreased biotinylation of histones, not of carboxylases. J Nutr 137:885–889

    PubMed  CAS  Google Scholar 

  • Casal S, Oliveira MB, Alves MR, Ferreira MA (2000) Discriminate analysis of roasted coffee varieties for trigonelline, nicotinic acid, and caffeine content. J Agric Food Chem 48:3420–3424

    Article  PubMed  CAS  Google Scholar 

  • Celotti E, Ferrarini R, Zironi R, Conte LS (1996) Resveratrol content of some wines obtained from dried Valpolicella grapes: Recioto and Amarone. J Chromatogr A 730:47–52

    Article  PubMed  CAS  Google Scholar 

  • Chambon P, Weill JD, Doly J, Strosser MT, Mandel P (1966) On the formation of a novel adenylic compound by enzymatic extracts of liver nuclei. Biochem Biophys Res Commun 25:638–643

    Article  CAS  Google Scholar 

  • Check E (2003) Cancer fears cast doubts on future of gene therapy. Nature 421:678

    Article  PubMed  CAS  Google Scholar 

  • Chen WY, Townes TM (2000) Molecular mechanism for silencing virally transduced genes involves histone deacetylation and chromatin condensation. Proc Natl Acad Sci USA 97:377–382

    Article  PubMed  CAS  Google Scholar 

  • Chen WY, Bailey EC, McCune SL, Dong JY, Townes TM (1997) Reactivation of silenced, virally transduced genes by inhibitors of histone deacetylase. Proc Natl Acad Sci USA 94:5798–5803

    Article  PubMed  CAS  Google Scholar 

  • Chen HY, Sun JM, Zhang Y, Davie JR, Meistrich ML (1998) Ubiquitination of histone H3 in elongating spermatids of rat testes. J Biol Chem 273:13165–13169

    Article  PubMed  CAS  Google Scholar 

  • Cheung WL, Ajiro K, Samejima K, Kloc M, Cheung P, Mizzen CA, Beeser A, Etkin LD, Chernoff J, Earnshaw WC, Allis CD (2003) Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase. Cell 113:507–517

    Article  PubMed  CAS  Google Scholar 

  • Chew YC, Camporeale G, Kothapalli N, Sarath G, Zempleni J (2006) Lysine residues in N- and C-terminal regions of human histone H2A are targets for biotinylation by biotinidase. J Nutr Biochem 17:225–233

    Article  PubMed  CAS  Google Scholar 

  • Chew YC, Sarath G, Zempleni J (2007) An avidin-based assay for quantification of histone debiotinylase activity in nuclear extracts from eukaryotic cells. J Nutr Biochem 18:475–481

    Article  PubMed  CAS  Google Scholar 

  • Chew YC, West JT, Kratzer SJ, Ilvarsonn AM, Eissenberg JC, Dave BJ, Klinkebiel D, Christman JK, Zempleni J (2008) Biotinylation of histones represses transposable elements in human and mouse cells and cell lines, and in Drosophila melanogaster. J Nutr 138:2316–2322

    Article  PubMed  CAS  Google Scholar 

  • Christman JK (2003) Diet, DNA methylation and cancer. In: Zempleni J, Daniel H (eds) Molecular nutrition. CAB International, Wallingford, pp 237–265

    Chapter  Google Scholar 

  • Cooney CA (2008) Cancer and aging: the epigenetic connection. In: Tollefsbol TO (ed) Cancer epigenetics. CRC Press, Boca Raton, pp 303–316

    Chapter  Google Scholar 

  • Cooney CA (2009) Nutrients, epigenetics, and embryonic development. In: Choi SW, Friso S (ed) Nutrients and epigenetics. CRC Press, Boca Raton (in press)

    Google Scholar 

  • Cooney CA, Dave AA, Wolff GL (2002) Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr 132:2393S–2400S

    PubMed  CAS  Google Scholar 

  • Cummings JH, Macfarlane GT, Englyst HN (2001) Prebiotic digestion and fermentation. Am J Clin Nutr 73:415S–420S

    PubMed  CAS  Google Scholar 

  • D’Andrea A, Pellman D (1998) Deubiquitinating enzymes: a new class of biological regulators. Crit Rev Biochem Mol Biol 33:337–352

    Article  PubMed  Google Scholar 

  • Darai-Ramqvist E, Sandlund A, Muller S, Klein G, Imreh S, Kost-Alimova M (2008) Segmental duplications and evolutionary plasticity at tumor chromosome break-prone regions. Genome Res 18:370–379

    Article  PubMed  CAS  Google Scholar 

  • Davie JR (2003) Inhibition of histone deacetylase activity by butyrate. J Nutr 133:2485S–2493S

    PubMed  CAS  Google Scholar 

  • Desai D, Salli U, Vrana KE, Amin S (2010) SelSA, selenium analogs of SAHA as potent histone deacetylase inhibitors. Bioorg Med Chem Lett 20:2044–2047

    Article  PubMed  CAS  Google Scholar 

  • Dobosy JR, Fu VX, Desotelle JA, Srinivasan R, Kenowski ML, Almassi N, Weindruch R, Svaren J, Jarrard DF (2008) A methyl-deficient diet modifies histone methylation and alters Igf2 and H19 repression in the prostate. Prostate 68:1187–1195

    Article  PubMed  CAS  Google Scholar 

  • Dokmanovic M, Clarke C, Marks PA (2007) Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 5:981–989

    Article  PubMed  CAS  Google Scholar 

  • Dolinoy DC, Weidman JR, Waterland RA, Jirtle RL (2006) Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect 114:567–572

    Article  PubMed  CAS  Google Scholar 

  • Drummond DC, Noble CO, Kirpotin DB, Guo Z, Scott GK, Benz CC (2005) Clinical development of histone deacetylase inhibitors as anticancer agents. Annu Rev Pharmacol Toxicol 45:495–528

    Article  PubMed  CAS  Google Scholar 

  • Eden A, Gaudet F, Waghmare A, Jaenisch R (2003) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300:455

    Article  PubMed  CAS  Google Scholar 

  • Esteve PO, Chin HG, Smallwood A, Feehery GR, Gangisetty O, Karpf AR, Carey MF, Pradhan S (2006) Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes Dev 20:3089–3103

    Article  PubMed  CAS  Google Scholar 

  • Evason K, Huang C, Yamben I, Covey DF, Kornfeld K (2005) Anticonvulsant medications extend worm life-span. Science 307:258–262

    Article  PubMed  CAS  Google Scholar 

  • Fan H (2007) A new human retrovirus associated with prostate cancer. Proc Natl Acad Sci USA 104:1449–1450

    Article  PubMed  CAS  Google Scholar 

  • Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4:143–153

    Article  PubMed  CAS  Google Scholar 

  • Filenko NA, Kolar C, West JT, Hassan YI, Borgstahl GEO, Zempleni J, Lyubchenko YL (2011) The role of histone H4 biotinylation in the structure and dynamics of nucleosomes. PLoS One 6:e16299

    Article  PubMed  CAS  Google Scholar 

  • Fraga MF, Esteller M (2005) Towards the human cancer epigenome: a first draft of histone modifications. Cell Cycle 4:1377–1381

    Article  PubMed  CAS  Google Scholar 

  • Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S, Petrie K, Iyer NG, Perez-Rosado A, Calvo E, Lopez JA, Cano A, Calasanz MJ, Colomer D, Piris MA, Ahn N, Imhof A, Caldas C, Jenuwein T, Esteller M (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37:391–400

    Article  PubMed  CAS  Google Scholar 

  • Freitas-Junior LH, Hernandez-Rivas R, Ralph SA, Montiel-Condado D, Ruvalcaba-Salazar OK, Rojas-Meza AP, Mancio-Silva L, Leal-Silvestre RJ, Gontijo AM, Shorte S, Scherf A (2005) Telomeric heterochromatin propagation and histone acetylation control mutually exclusive expression of antigenic variation genes in malaria parasites. Cell 121:25–36

    Article  PubMed  CAS  Google Scholar 

  • Garrett RH, Grisham CM (1995) Biochemistry. Saunders College Publishing, Fort Worth

    Google Scholar 

  • Gasior SL, Wakeman TP, Xu B, Deininger PL (2006) The human LINE-1 retrotransposon creates DNA double-strand breaks. J Mol Biol 357:1383–1393

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S (2009) Physiology, regulation, and pathogenesis of nitrogen metabolism in opportunistic fungal pathogen Candida albicans. Ph.D. thesis (advisor: Ken Nickerson) School of Biological Sciences, University of Nebraska-Lincoln, p 169

    Google Scholar 

  • Gralla M, Camporeale G, Zempleni J (2008) Holocarboxylase synthetase regulates expression of biotin transporters by chromatin remodeling events at the SMVT locus. J Nutr Biochem 19:400–408

    Article  PubMed  CAS  Google Scholar 

  • Gray SG, De Meyts P (2005) Role of histone and transcription factor acetylation in diabetes pathogenesis. Diabetes Metab Res Rev 21:416–433

    Article  PubMed  CAS  Google Scholar 

  • Green R, Miller JW (2007) Vitamin B12. In: Zempleni JR, McCormick DB, Suttie JW (eds) Handbook of vitamins. Taylor & Francis, Boca Raton, pp 413–457

    Google Scholar 

  • Green KN, Steffan JS, Martinez-Coria H, Sun X, Schreiber SS, Thompson LM, LaFerla FM (2008) Nicotinamide restores cognition in Alzheimer’s disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. J Neurosci 28:11500–11510

    Article  PubMed  CAS  Google Scholar 

  • Griffin JB, Rodriguez-Melendez R, Dode L, Wuytack F, Zempleni J (2006) Biotin supplementation decreases the expression of the SERCA3 gene (ATP2A3) in Jurkat cells, thus, triggering unfolded protein response. J Nutr Biochem 17:272–281

    Article  PubMed  CAS  Google Scholar 

  • Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 105:17046–17049

    Article  PubMed  CAS  Google Scholar 

  • Henry KW, Wyce A, Lo WS, Duggan LJ, Emre NC, Kao CF, Pillus L, Shilatifard A, Osley MA, Berger SL (2003) Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev 17:2648–2663

    Article  PubMed  CAS  Google Scholar 

  • Ho C, van der Veer E, Akawi O, Pickering JG (2009a) SIRT1 markedly extends replicative lifespan if the NAD+ salvage pathway is enhanced. FEBS Lett 583:3081–3085

    Article  PubMed  CAS  Google Scholar 

  • Ho E, Clarke JD, Dashwood RH (2009b) Dietary sulforaphane, a histone deacetylase inhibitor for cancer prevention. J Nutr 139:2393–2396

    Article  PubMed  CAS  Google Scholar 

  • Honein MA, Paulozzi LJ, Mathews TJ, Erickson JD, Wong LY (2001) Impact of folic acid fortification of the US food supply on the occurrence of neural tube defects. JAMA 285:2981–2986

    Article  PubMed  CAS  Google Scholar 

  • Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196

    Article  PubMed  CAS  Google Scholar 

  • Huang S (2002) Histone methyltransferases, diet nutrients and tumour suppressors. Nat Rev Cancer 2:469–476

    Article  PubMed  CAS  Google Scholar 

  • Hwang WW, Venkatasubrahmanyam S, Ianculescu AG, Tong A, Boone C, Madhani HD (2003) A conserved RING finger protein required for histone H2B monoubiquitination and cell size control. Mol Cell 11:261–266

    Article  PubMed  CAS  Google Scholar 

  • Hymes J, Fleischhauer K, Wolf B (1995) Biotinylation of histones by human serum biotinidase: assessment of biotinyl-transferase activity in sera from normal individuals and children with biotinidase deficiency. Biochem Mol Med 56:76–83

    Article  PubMed  CAS  Google Scholar 

  • Jahner D, Stuhlmann H, Stewart CL, Harbers K, Lohler J, Simon I, Jaenisch R (1982) De novo methylation and expression of retroviral genomes during mouse embryogenesis. Nature 298:623–628

    Article  PubMed  CAS  Google Scholar 

  • Kang HL, Benzer S, Min KT (2002) Life extension in Drosophila by feeding a drug. Proc Natl Acad Sci USA 99:838–843

    Article  PubMed  CAS  Google Scholar 

  • Kazazian HH Jr, Moran JV (1998) The impact of L1 retrotransposons on the human genome. Nat Genet 19:19–24

    Article  PubMed  CAS  Google Scholar 

  • Kim MY, Zhang T, Kraus WL (2005) Poly(ADP-ribosyl)ation by PARP-1: ‘PAR-laying’ NAD+ into a nuclear signal. Genes Dev 19:1951–1967

    Article  PubMed  CAS  Google Scholar 

  • Kirkland J, Zempleni J, Buckles LK, Christman JK (2007) Vitamin-dependent modifications of chromatin: epigenetic events and genomic stability. In: Zempleni J, Rucker RB, McCormick DB, Suttie JW (eds) Handbook of vitamins. Taylor & Francis, Boca Raton, pp 521–544

    Google Scholar 

  • Klose RJ, Kallin EM, Zhang Y (2006) JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet 7:715–727

    Article  PubMed  CAS  Google Scholar 

  • Kobza K, Camporeale G, Rueckert B, Kueh A, Griffin JB, Sarath G, Zempleni J (2005) K4, K9, and K18 in human histone H3 are targets for biotinylation by biotinidase. FEBS J 272:4249–4259

    Article  PubMed  CAS  Google Scholar 

  • Kobza K, Sarath G, Zempleni J (2008) Prokaryotic BirA ligase biotinylates K4, K9, K18 and K23 in histone H3. BMB Rep 41:310–315

    Article  PubMed  CAS  Google Scholar 

  • Koken MH, Reynolds P, Jaspers-Dekker I, Prakash L, Prakash S, Bootsma D, Hoeijmakers JH (1991) Structural and functional conservation of two human homologs of the yeast DNA repair gene RAD6. Proc Natl Acad Sci USA 88:8865–8869

    Article  PubMed  CAS  Google Scholar 

  • Kouzarides T, Berger SL (2007) Chromatin modifications and their mechanism of action. In: Allis CD, Jenuwein T, Reinberg D (eds) Epigenetics. Cold Spring Harbor Press, Cold Spring Harbor, pp 191–209

    Google Scholar 

  • Kuroishi T, Rios-Avila L, Pestinger V, Wijeratne SSK, Zempleni J (2011) Biotinylation is a natural, albeit rare, modification of human histones. Mol Genet Metab 104(4):537–545

    Article  PubMed  CAS  Google Scholar 

  • Launay JM, Del Pino M, Chironi G, Callebert J, Peoc’h K, Megnien JL, Mallet J, Simon A, Rendu F (2009) Smoking induces long-lasting effects through a monoamine-oxidase epigenetic regulation. PLoS One 4:e7959

    Article  PubMed  CAS  Google Scholar 

  • Lee KK, Workman JL (2007) Histone acetyltransferase complexes: one size doesn’t fit all. Nat Rev Mol Cell Biol 8:284–295

    Article  PubMed  CAS  Google Scholar 

  • Li E, Bird A (2007) DNA methylation in mammals. In: Allis CD, Jenuwein T, Reinberg D (eds) Epigenetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 341–356

    Google Scholar 

  • Liu T, Kuljaca S, Tee A, Marshall GM (2006) Histone deacetylase inhibitors: multifunctional anticancer agents. Cancer Treat Rev 32:157–165

    Article  PubMed  CAS  Google Scholar 

  • Ma BB, Sung F, Tao Q, Poon FF, Lui VW, Yeo W, Chan SL, Chan AT (2010) The preclinical activity of the histone deacetylase inhibitor PXD101 (belinostat) in hepatocellular carcinoma cell lines. Invest New Drugs 28:107–114

    Article  PubMed  CAS  Google Scholar 

  • Malanga M, Althaus FR (2005) The role of poly(ADP-ribose) in the DNA damage signaling network. Biochem Cell Biol 83:354–364

    Article  PubMed  CAS  Google Scholar 

  • Martens JH, O’Sullivan RJ, Braunschweig U, Opravil S, Radolf M, Steinlein P, Jenuwein T (2005) The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J 24:800–812

    Article  PubMed  CAS  Google Scholar 

  • Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6:838–849

    Article  PubMed  CAS  Google Scholar 

  • Mason JB, Gibson N, Kodicek E (1973) The chemical nature of the bound nicotinic acid of wheat bran: studies of nicotinic acid-containing macromolecules. Br J Nutr 30:297–311

    Article  PubMed  CAS  Google Scholar 

  • McKinsey TA, Olson EN (2004) Cardiac histone acetylation–therapeutic opportunities abound. Trends Genet 20:206–213

    Article  PubMed  CAS  Google Scholar 

  • Melchior F (2000) SUMO–nonclassical ubiquitin. Annu Rev Cell Dev Biol 16:591–626

    Article  PubMed  CAS  Google Scholar 

  • Messner S, Altmeyer M, Zhao H, Pozivil A, Roschitzki B, Gehrig P, Rutishauser D, Huang D, Caflisch A, Hottiger MO (2010) PARP1 ADP-ribosylates lysine residues of the core histone tails. Nucleic Acids Res 38:6350–6362

    Article  PubMed  CAS  Google Scholar 

  • Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6:38–51

    Article  PubMed  CAS  Google Scholar 

  • Miwa M, Ishihara M, Takishima S, Takasuka N, Maeda M, Yamaizumi Z, Sugimura T, Yokoyama S, Miyazawa T (1981) The branching and linear portions of poly(adenosine diphosphate ribose) have the same alpha(1 leads to 2) ribose-ribose linkage. J Biol Chem 256:2916–2921

    PubMed  CAS  Google Scholar 

  • Mock DM (2009) Marginal biotin deficiency is common in normal human pregnancy and is highly teratogenic in mice. J Nutr 139:154–157

    PubMed  CAS  Google Scholar 

  • Montoya-Durango DE, Liu Y, Teneng I, Kalbfleisch T, Lacy ME, Steffen MC, Ramos KS (2009) Epigenetic control of mammalian LINE-1 retrotransposon by retinoblastoma proteins. Mutat Res 665:20–28

    Article  PubMed  CAS  Google Scholar 

  • Morimoto T, Sunagawa Y, Kawamura T, Takaya T, Wada H, Nagasawa A, Komeda M, Fujita M, Shimatsu A, Kita T, Hasegawa K (2008) The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J Clin Invest 118:868–878

    PubMed  CAS  Google Scholar 

  • Myzak MC, Dashwood WM, Orner GA, Ho E, Dashwood RH (2006) Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apc-minus mice. FASEB J 20:506–508

    PubMed  CAS  Google Scholar 

  • Narang MA, Dumas R, Ayer LM, Gravel RA (2004) Reduced histone biotinylation in multiple carboxylase deficiency patients: a nuclear role for holocarboxylase synthetase. Hum Mol Genet 13:15–23

    Article  PubMed  CAS  Google Scholar 

  • Nathan D, Sterner DE, Berger SL (2003) Histone modifications: now summoning sumoylation. Proc Natl Acad Sci USA 100:13118–13120

    Article  PubMed  CAS  Google Scholar 

  • National Center for Biotechnology Information (2008) Online Mendelian Inheritance in Man. http://www.ncbi.nlm.nih.gov/sites/entrez?db=omim. Accessed 21 July 2008)

  • National Heart Lung and Blood Institute at the National Institutes of Health, Department of Health and Human Services (2011) Who is at risk for iron-deficiency anemia? Department of Health and Human Services, NIH, Bethesda. http://www.nhlbi.nih.gov/health/dci/Diseases/ida/ida_whoisatrisk.html. Accessed 2 Feb 2011)

  • National Research Council (Institute of Medicine National Academies of Sciences) (1998) Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. National Academy Press, Washington, DC

    Google Scholar 

  • Nickel BE, Allis CD, Davie JR (1989) Ubiquitinated histone H2B is preferentially located in transcriptionally active chromatin. Biochemistry 28:958–963

    Article  PubMed  CAS  Google Scholar 

  • Norman AW, Henry HL (2007) Vitamin D. In: Zempleni J, Rucker RB, McCormick DB, Suttie JW (eds) Handbook of vitamins. Taylor & Francis, Boca Raton, pp 41–109

    Google Scholar 

  • Pestinger V, Wijeratne SSK, Rodriguez-Melendez R, Zempleni J (2011) Novel histone biotinylation marks are enriched in repeat regions and participate in repression of transcriptionally competent genes. J Nutr Biochem 22:328–333

    Article  PubMed  CAS  Google Scholar 

  • Pham A-D, Sauer F (2000) Ubiquitin-activating/conjugating activity of TAFII250, a mediator of activation of gene expression in Drosophila. Science 289:2357–2360

    Article  PubMed  CAS  Google Scholar 

  • Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533

    Article  PubMed  CAS  Google Scholar 

  • Pogribny IP, Ross SA, Tryndyak VP, Pogribna M, Poirier LA, Karpinets TV (2006) Histone H3 lysine 9 and H4 lysine 20 trimethylation and the expression of Suv4-20h2 and Suv-39h1 histone methyltransferases in hepatocarcinogenesis induced by methyl deficiency in rats. Carcinogenesis 27:1180–1186

    Article  PubMed  CAS  Google Scholar 

  • Poke FS, Qadi A, Holloway AF (2010) Reversing aberrant methylation patterns in cancer. Curr Med Chem 17:1246–1254

    Article  PubMed  CAS  Google Scholar 

  • Reed MC, Nijhout HF, Neuhouser ML, Gregory JF 3rd, Shane B, James SJ, Boynton A, Ulrich CM (2006) A mathematical model gives insights into nutritional and genetic aspects of folate-mediated one-carbon metabolism. J Nutr 136:2653–2661

    PubMed  CAS  Google Scholar 

  • Rivlin RS (2007) Riboflavin (Vitamin B2). In: Zempleni J, Rucker RB, McCormick DB, Suttie JW (eds) Handbook of vitamins. Taylor & Francis, Boca Raton, pp 233–251

    Google Scholar 

  • Robzyk K, Recht J, Osley MA (2000) Rad6-dependent ubiquitination of histone H2B in yeast. Science 287:501–504

    Article  PubMed  CAS  Google Scholar 

  • Saha RN, Pahan K (2006) HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis. Cell Death Differ 13:539–550

    Article  PubMed  CAS  Google Scholar 

  • Selvi RB, Kundu TK (2009) Reversible acetylation of chromatin: implication in regulation of gene expression, disease and therapeutics. Biotechnol J 4:375–390

    Article  PubMed  CAS  Google Scholar 

  • Shiio Y, Eisenman RN (2003) Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci USA 100:13225–13230

    Article  PubMed  CAS  Google Scholar 

  • Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285

    Article  PubMed  CAS  Google Scholar 

  • Smit AF (1999) Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr Opin Genet Dev 9:657–663

    Article  PubMed  CAS  Google Scholar 

  • Stanley JS, Griffin JB, Zempleni J (2001) Biotinylation of histones in human cells: effects of cell proliferation. Eur J Biochem 268:5424–5429

    Article  PubMed  CAS  Google Scholar 

  • Stratton SL, Bogusiewicz A, Mock MM, Mock NI, Wells AM, Mock DM (2006) Lymphocyte propionyl-CoA carboxylase and its activation by biotin are sensitive indicators of marginal biotin deficiency in humans. Am J Clin Nutr 84:384–388

    PubMed  CAS  Google Scholar 

  • Suzuki Y, Yang X, Aoki Y, Kure S, Matsubara Y (2005) Mutations in the holocarboxylase synthetase gene HLCS. Hum Mutat 26:285–290

    Article  PubMed  CAS  Google Scholar 

  • Thuy LP, Belmont J, Nyhan WL (1999) Prenatal diagnosis and treatment of holocarboxylase synthetase deficiency. Prenat Diagn 19:108–112

    Article  PubMed  CAS  Google Scholar 

  • Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, Zhang Y (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature 439:811–816

    Article  PubMed  CAS  Google Scholar 

  • Valenzano DR, Terzibasi E, Genade T, Cattaneo A, Domenici L, Cellerino A (2006) Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol 16:296–300

    Article  PubMed  CAS  Google Scholar 

  • Walsh CP, Chaillet JR, Bestor TH (1998) Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet 20:116–117

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Wysocka J, Sayegh J, Lee YH, Perlin JR, Leonelli L, Sonbuchner LS, McDonald CH, Cook RG, Dou Y, Roeder RG, Clarke S, Stallcup MR, Allis CD, Coonrod SA (2004) Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306:279–283

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Hevi S, Kurash JK, Lei H, Gay F, Bajko J, Su H, Sun W, Chang H, Xu G, Gaudet F, Li E, Chen T (2009) The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet 41:125–129

    Article  PubMed  CAS  Google Scholar 

  • Warnatz HJ, Querfurth R, Guerasimova A, Cheng X, Haas SA, Hufton AL, Manke T, Vanhecke D, Nietfeld W, Vingron M, Janitz M, Lehrach H, Yaspo ML (2010) Functional analysis and identification of cis-regulatory elements of human chromosome 21 gene promoters. Nucleic Acids Res 38:6112–6123

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T (1983) Teratogenic effects of biotin deficiency in mice. J Nutr 113:574–581

    PubMed  CAS  Google Scholar 

  • Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23:5293–5300

    Article  PubMed  CAS  Google Scholar 

  • West MH, Bonner WM (1980) Histone 2B can be modified by the attachment of ubiquitin. Nucleic Acids Res 8:4671–4680

    Article  PubMed  CAS  Google Scholar 

  • Wijeratne SS, Camporeale G, Zempleni J (2010) K12-biotinylated histone H4 is enriched in telomeric repeats from human lung IMR-90 fibroblasts. J Nutr Biochem 21:310–316

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson KD (2000) Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin Cell Dev Biol 11:141–148

    Article  PubMed  CAS  Google Scholar 

  • Wolff GL, Kodell RL, Moore SR, Cooney CA (1998) Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J 12:949–957

    PubMed  CAS  Google Scholar 

  • Wolffe A (1998) Chromatin, 3rd edn. Academic, San Diego

    Google Scholar 

  • Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13:335–340

    Article  PubMed  CAS  Google Scholar 

  • Zempleni J, Mock DM (2000) Biotin. In: Song WO, Beecher GR (eds) Modern analytical methodologies on fat and water-soluble vitamins. Wiley, New York, pp 389–409

    Google Scholar 

  • Zhang Y (2003) Transcriptional regulation by histone ubiquitination and deubiquitination. Genes Dev 17:2733–2740

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

A contribution of the University of Nebraska Agricultural Research Division, supported in part by funds provided through the Hatch Act. Additional support was provided by NIH grants DK063945, DK077816, DK082476 and ES015206, and USDA CSREES grant 2006-35200-17138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janos Zempleni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zempleni, J., Liu, D., Xue, J. (2013). Nutrition, Histone Epigenetic Marks, and Disease. In: Jirtle, R., Tyson, F. (eds) Environmental Epigenomics in Health and Disease. Epigenetics and Human Health. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36827-1_9

Download citation

Publish with us

Policies and ethics