Skip to main content

Chromatin Switching and Gene Dynamics Associated with Type 2 Diabetes

  • Chapter
  • First Online:
Environmental Epigenomics in Health and Disease

Part of the book series: Epigenetics and Human Health ((EHH))

  • 1462 Accesses

Abstract

Type 2 diabetes (T2DM) is a chronic disease with a rapidly increasing global burden. An early event in the disease is deregulation of glycaemic control resulting in periods of hyperglycaemia. Large-scale clinical studies have shown that complications resulting from this hyperglycaemia can be manifest long after glycaemic control has been restored (UKPDS, Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33) UK Prospective Diabetes Study (UKPDS) Group. Lancet 352:837–852, 1998; Chalmers J, Cooper ME, UKPDS and the legacy effect. N Engl J Med 359:1618–1620, 2008), a phenomenon known as the “legacy effect” (Holman RR et al., 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 359:1577–1589, 2008). Such continued development of cardiovascular complications, which result from prior exposure to hyperglycaemia, has led to the proposal of a “metabolic memory” (Cooper ME, Metabolic memory: implications for diabetic vascular complications. Pediatr Diabetes 10:343–346, 2009). Such a hypothesis suggests that a transient exposure to hyperglycaemia results in persistent changes in gene expression that are not reversed merely by restoring glycaemic control. Support for early, persistent changes came from the Diabetes Control and Complications Trial (DCCT) which revealed that early glycaemic control in diabetic patients led to sustained benefits and better outcomes (Cooper ME, Metabolic memory: implications for diabetic vascular complications. Pediatr Diabetes 10:343–346, 2009), and it has recently been proposed that minimising early exposure to hyperglycaemia is paramount (Aizawa T, Funase Y, Intervention at the very early stage of type 2 diabetes. Diabetologia 54:703–704; author reply 707–708, 2011). Currently, the most attractive potential mechanism responsible for the “legacy effect” is epigenetic, manifested by changes in DNA methylation and/or posttranslational modifications on histones. Over the last decade, numerous studies have identified correlations of specific epigenetic marks with type 2 diabetes, and more recently the mechanisms by which these changes lead to persistent alterations in gene expression levels have been interrogated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CBP:

CREB-binding protein

COMPASS:

Complex proteins associated with Set1

CREB:

cAMP response element binding protein

DCCT:

Diabetes Control and Complications Trial

DNMT:

DNA methyltransferase

H3K4me1:

Monomethylated Histone H3 lysine 4

H3K4me2:

Dimethylated histone H3 lysine 4

H3K4me3:

Trimethyl histone H3 lysine 4

H3K9me2:

Dimethyl histone H3 lysine 9

HDAC:

Histone deacetylase

HAT:

Histone acetyltransferase

HMT:

Histone methyltransferase

HUVECS:

Human umbilical vein endothelial cells

IL:

Interleukin

JMJD2:

Jumonji domain 2

LSD1:

Lysine-specific demethylase 1

NFAT:

Nuclear factor of activated T cell

PGC-1α:

Peroxisome proliferator-activated receptor gamma coactivator-1 alpha

SAM:

S-adenosylmethionine

shRNA:

Short hairpin RNA

T2DM:

Type 2 diabetes mellitus

TGF:

Transforming growth factor

TNF:

Tumour necrosis factor

VEGF:

Vascular endothelial growth factor

VSMC:

Vascular smooth muscle cell

References

  • Barrès R, Osler ME, Yan J, Rune A, Fritz T, Caidahl K, Krook A, Zierath JR (2009) Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab 10:189–198

    Article  PubMed  Google Scholar 

  • Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  PubMed  CAS  Google Scholar 

  • Bingham AJ, Ooi L, Kozera L, White E, Wood IC (2007) The repressor element 1-silencing transcription factor regulates heart-specific gene expression using multiple chromatin-modifying complexes. Mol Cell Biol 27:4082–4092

    Article  PubMed  CAS  Google Scholar 

  • Brasacchio D, Okabe J, Tikellis C, Balcerczyk A, George P, Baker EK, Calkin AC, Brownlee M, Cooper ME, El-Osta A (2009) Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 58:1229–1236

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Feng B, George B, Chakrabarti R, Chen M, Chakrabarti S (2010) Transcriptional coactivator p300 regulates glucose-induced gene expression in endothelial cells. Am J Physiol Endocrinol Metab 298:E127–E137

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Nott TJ, Jin J, Pawson T (2011) Deciphering arginine methylation: tudor tells the tale. Nat Rev Mol Cell Biol 12:629–642

    Article  PubMed  CAS  Google Scholar 

  • Chiang EP, Wang YC, Chen WW, Tang FY (2009) Effects of insulin and glucose on cellular metabolic fluxes in homocysteine transsulfuration, remethylation, S-adenosylmethionine synthesis, and global deoxyribonucleic acid methylation. J Clin Endocrinol Metab 94:1017–1025

    Article  PubMed  CAS  Google Scholar 

  • Dandona P, Aljada A, Bandyopadhyay A (2004) Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol 25:4–7

    Article  PubMed  CAS  Google Scholar 

  • Day JJ, Sweatt JD (2010) DNA methylation and memory formation. Nat Neurosci 13:1319–1323

    Article  PubMed  CAS  Google Scholar 

  • Dover J, Schneider J, Tawiah-Boateng MA, Wood A, Dean K, Johnston M, Shilatifard A (2002) Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. J Biol Chem 277:28368–28371

    Article  PubMed  CAS  Google Scholar 

  • Eberl HC, Mann M, Vermeulen M (2011) Quantitative proteomics for epigenetics. Chembiochem 12:224–234

    Article  PubMed  CAS  Google Scholar 

  • El-Osta A, Brasacchio D, Yao D, Pocai A, Jones PL, Roeder RG, Cooper ME, Brownlee M (2008) Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med 205:2409–2417

    Article  PubMed  CAS  Google Scholar 

  • Findeisen HM, Gizard F, Zhao Y, Qing H, Heywood EB, Jones KL, Cohn D, Bruemmer D (2011) Epigenetic regulation of vascular smooth muscle cell proliferation and neointima formation by histone deacetylase inhibition. Arterioscler Thromb Vasc Biol 31:851–860

    Article  PubMed  CAS  Google Scholar 

  • Gaikwad AB, Gupta J, Tikoo K (2010) Epigenetic changes and alteration of Fbn1 and Col3A1 gene expression under hyperglycaemic and hyperinsulinaemic conditions. Biochem J 432:333–341

    Article  PubMed  CAS  Google Scholar 

  • Hansen JC, Tse C, Wolffe AP (1998) Structure and function of the core histone N-termini: more than meets the eye. Biochemistry 37:17637–17641

    Article  PubMed  CAS  Google Scholar 

  • Hon G, Ren B, Wang W (2008) ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome. PLoS Comput Biol 4:e1000201

    Article  PubMed  Google Scholar 

  • Hon G, Wang W, Ren B (2009) Discovery and annotation of functional chromatin signatures in the human genome. PLoS Comput Biol 5:e1000566

    Article  PubMed  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    Article  PubMed  CAS  Google Scholar 

  • Kalkhoven E, Roelfsema JH, Teunissen H, den Boer A, Ariyurek Y, Zantema A, Breuning MH, Hennekam RC, Peters DJ (2003) Loss of CBP acetyltransferase activity by PHD finger mutations in Rubinstein-Taybi syndrome. Hum Mol Genet 12:441–450

    Article  PubMed  CAS  Google Scholar 

  • Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI, Friedman JM (1996) Abnormal splicing of the leptin receptor in diabetic mice. Nature 379:632–635

    Article  PubMed  CAS  Google Scholar 

  • Lee MG, Wynder C, Cooch N, Shiekhattar R (2005) An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 437(7057):432–435

    PubMed  CAS  Google Scholar 

  • Li SL, Reddy MA, Cai Q, Meng L, Yuan H, Lanting L, Natarajan R (2006) Enhanced proatherogenic responses in macrophages and vascular smooth muscle cells derived from diabetic db/db mice. Diabetes 55:2611–2619

    Article  PubMed  CAS  Google Scholar 

  • Ling C, Groop L (2009) Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes 58:2718–2725

    Article  PubMed  CAS  Google Scholar 

  • Maier S, Olek A (2002) Diabetes: a candidate disease for efficient DNA methylation profiling. J Nutr 132(8 Suppl):2440S–2443S

    PubMed  CAS  Google Scholar 

  • Miao F, Gonzalo IG, Lanting L, Natarajan R (2004) In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J Biol Chem 279:18091–18097

    Article  PubMed  CAS  Google Scholar 

  • Miao F, Wu X, Zhang L, Yuan YC, Riggs AD, Natarajan R (2007) Genome-wide analysis of histone lysine methylation variations caused by diabetic conditions in human monocytes. J Biol Chem 282:13854–13863

    Article  PubMed  CAS  Google Scholar 

  • Nikoshkov A, Sunkari V, Savu O, Forsberg E, Catrina SB, Brismar K (2011) Epigenetic DNA methylation in the promoters of the Igf1 receptor and insulin receptor genes in db/db mice. Epigenetics 6:405–409

    Article  PubMed  CAS  Google Scholar 

  • Nilsson J, Nilsson LM, Chen YW, Molkentin JD, Erlinge D, Gomez MF (2006) High glucose activates nuclear factor of activated T cells in native vascular smooth muscle. Arterioscler Thromb Vasc Biol 26:794–800

    Article  PubMed  CAS  Google Scholar 

  • Nilsson-Berglund LM, Zetterqvist AV, Nilsson-Ohman J, Sigvardsson M, González Bosc LV, Smith ML, Salehi A, Agardh E, Fredrikson GN, Agardh CD, Nilsson J, Wamhoff BR, Hultgårdh-Nilsson A, Gomez MF (2010) Nuclear factor of activated T cells regulates osteopontin expression in arterial smooth muscle in response to diabetes-induced hyperglycemia. Arterioscler Thromb Vasc Biol 30:218–224

    Article  PubMed  CAS  Google Scholar 

  • Pirola L, Balcerczyk A, Okabe J, El-Osta A (2010) Epigenetic phenomena linked to diabetic complications. Nat Rev Endocrinol 6:665–675

    Article  PubMed  CAS  Google Scholar 

  • Pirola L, Balcerczyk A, Tothill RW, Haviv I, Kaspi A, Lunke S, Ziemann M, Karagiannis T, Tonna S, Kowalczyk A, Beresford-Smith B, Macintyre G, Kelong M, Hongyu Z, Zhu J, El-Osta A (2011) Genome-wide analysis distinguishes hyperglycemia regulated epigenetic signatures of primary vascular cells. Genome Res 21:1601–1615

    Article  PubMed  CAS  Google Scholar 

  • Poirier LA, Brown AT, Fink LM, Wise CK, Randolph CJ, Delongchamp RR, Fonseca VA (2001) Blood S-adenosylmethionine concentrations and lymphocyte methylenetetrahydrofolate reductase activity in diabetes mellitus and diabetic nephropathy. Metabolism 50:1014–1018

    Article  PubMed  CAS  Google Scholar 

  • Reddy MA, Natarajan R (2011) Epigenetic mechanisms in diabetic vascular complications. Cardiovasc Res 90:421–429

    Article  PubMed  CAS  Google Scholar 

  • Roy S, Sala R, Cagliero E, Lorenzi M (1990) Overexpression of fibronectin induced by diabetes or high glucose: phenomenon with a memory. Proc Natl Acad Sci U S A 87:404–408

    Article  PubMed  CAS  Google Scholar 

  • Sanchez R, Zhou MM (2011) The PHD finger: a versatile epigenome reader. Trends Biochem Sci 36:364–372

    PubMed  CAS  Google Scholar 

  • Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953

    Article  PubMed  CAS  Google Scholar 

  • Shi YJ, Matson C, Lan F, Iwase S, Baba T, Shi Y (2005) Regulation of LSD1 histone demethylase activity by its associated factors. Mol Cell 19:857–864

    Article  PubMed  CAS  Google Scholar 

  • Singh SM, Murphy B, O’Reilly RL (2003) Involvement of gene-diet/drug interaction in DNA methylation and its contribution to complex diseases: from cancer to schizophrenia. Clin Genet 64:451–460

    Article  PubMed  CAS  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  PubMed  CAS  Google Scholar 

  • Sun G, Reddy MA, Yuan H, Lanting L, Kato M, Natarajan R (2010) Epigenetic histone methylation modulates fibrotic gene expression. J Am Soc Nephrol 21:2069–2080

    Article  PubMed  CAS  Google Scholar 

  • Szyf M, Detich N (2001) Regulation of the DNA methylation machinery and its role in cellular transformation. Prog Nucleic Acid Res Mol Biol 69:47–79

    Article  PubMed  CAS  Google Scholar 

  • Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, Zhang Y (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature 439:811–816

    Article  PubMed  CAS  Google Scholar 

  • Turek-Plewa J, Jagodzinski PP (2005) The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol Biol Lett 10:631–647

    PubMed  CAS  Google Scholar 

  • Turner BM (1993) Decoding the nucleosome. Cell 75:5–8

    PubMed  CAS  Google Scholar 

  • Villeneuve LM, Reddy MA, Lanting LL, Wang M, Meng L, Natarajan R (2008) Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes. Proc Natl Acad Sci U S A 105:9047–9052

    Article  PubMed  CAS  Google Scholar 

  • Villeneuve LM, Reddy MA, Natarajan R (2011) Epigenetics: deciphering its role in diabetes and its chronic complications. Clin Exp Pharmacol Physiol 38:401–409

    Article  CAS  Google Scholar 

  • Williams KT, Schalinske KL (2011) Tissue-specific alterations of methyl group metabolism and DNA hypermethylation in the Zucker (type 2) diabetic fatty rat. Diabetes Metab Res Rev. 28:123–131

    Google Scholar 

  • Witt O, Deubzer HE, Lodrini M, Milde T, Oehme I (2009) Targeting histone deacetylases in neuroblastoma. Curr Pharm Des 15:436–447

    Article  PubMed  CAS  Google Scholar 

  • Wood IC. (2011) Uncovering combinatorial interactions in chromatin. Epigenomics. 3:371–9.

    Article  PubMed  CAS  Google Scholar 

  • Wu SC, Zhang Y (2010) Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 11:607–620

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Long C, Chen X, Huang C, Chen S, Zhu B (2010) Partitioning of histone H3-H4 tetramers during DNA replication-dependent chromatin assembly. Science 328:94–98

    Article  PubMed  CAS  Google Scholar 

  • Yang BT, Dayeh TA, Kirkpatrick CL, Taneera J, Kumar R, Groop L, Wollheim CB, Nitert MD, Ling C (2011) Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA(1c) levels in human pancreatic islets. Diabetologia 54:360–367

    Article  PubMed  CAS  Google Scholar 

  • Yap KL, Zhou MM (2011) Structure and mechanisms of lysine methylation recognition by the chromodomain in gene transcription. Biochemistry 50:1966–1980

    Article  PubMed  CAS  Google Scholar 

  • Yerneni KK, Bai W, Khan BV, Medford RM, Natarajan R (1999) Hyperglycemia-induced activation of nuclear transcription factor kappaB in vascular smooth muscle cells. Diabetes 48:855–864

    Article  PubMed  CAS  Google Scholar 

  • Zeng L, Zhou MM (2002) Bromodomain: an acetyl-lysine binding domain. FEBS Lett 513:124–128

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian C. Wood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wood, I.C. (2013). Chromatin Switching and Gene Dynamics Associated with Type 2 Diabetes. In: Jirtle, R., Tyson, F. (eds) Environmental Epigenomics in Health and Disease. Epigenetics and Human Health. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36827-1_10

Download citation

Publish with us

Policies and ethics