Skip to main content

Preconditioning for Large Scale Micro Finite Element Analyses of 3D Poroelasticity

  • Conference paper
Applied Parallel and Scientific Computing (PARA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7782))

Included in the following conference series:

Abstract

Osteoporosis is considered as a major health problem in the world. An understanding of the behavior of human bone under cyclic load requires numerical simulation of the physics. For that purpose, a large scale poroleastic solver is developed based on the mixed finite element method. This approach is free of numerical instabilities yet the discretization leads to an indefinite system that needs special attention. In this work, a comparison is made on several preconditioners that work efficiently in parallel environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adachi, T.J., Kameo, Y., Hojo, M.: Trabecular bone remodelling simulation considering osteocytic response to fluid-induced shear stress. Phil. Trans. R. Soc. A 368, 2669–2682 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aguilar, G., Gaspar, G., Lisbona, F., Rodrigo, C.: Numerical stabilization of Biot’s consolidation model by a perturbation on the flow equation. Int. J. Numer. Methods Eng. 75, 1282–1300 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arbenz, P., van Lenthe, G.H., Mennel, U., Müller, R., Sala, M.: A scalable multi-level preconditioner for matrix-free μ-finite element analysis of human bone structures. Int. J. Numer. Methods Eng. 73(7), 927–947 (2008)

    Article  MATH  Google Scholar 

  4. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–90 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biot, M.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  MATH  Google Scholar 

  6. Bowen, R.M.: Theory of mixtures. In: Eringen, A.C. (ed.) Continuum Physics, vol. 3, pp. 1–127. Academic Press, New York (1976)

    Google Scholar 

  7. Bundschuh, J., Arriaga, M.C.S.: Introduction to the Numerical Modeling of Groundwater and Geothermal Systems. Taylor and Francis, London (2010)

    Google Scholar 

  8. Coussy, O.: Poromechanics, 2nd edn. Wiley, Chichester (2004)

    Google Scholar 

  9. Coussy, O.: Mechanics and Physics of Porous Solids. Wiley, Chichester (2010)

    Book  Google Scholar 

  10. Cowin, S.C.: Bone poroelasticity. J. Biomech. 32, 217–238 (1999)

    Article  Google Scholar 

  11. Detournay, E., Cheng, D.A.H.: Fundamentals of poroelasticity. In: Fairhurst, C. (ed.) Comprehensive Rock Engineering: Principles, Practice & Projects, vol. 2, pp. 113–171. Pergamon, Oxford (1993)

    Google Scholar 

  12. Ferronato, M., Castelletto, N., Gambolati, G.: A fully coupled 3-D mixed finite element model of Biot consolidation. J. Comput. Phys. 229, 4813–4830 (2010)

    Article  MATH  Google Scholar 

  13. Flaig, C., Arbenz, P.: A scalable memory efficient multigrid solver for micro-finite element analyses based on CT images. Parallel Comput. 37(12), 846–854 (2011)

    Article  Google Scholar 

  14. Gambolati, G., Ferronato, M., Janna, C.: Preconditioners in computational geomechanics: A survey. Int. J. Numer. Anal. Meth. Geomech. 35, 980–996 (2011)

    Article  Google Scholar 

  15. Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier–Stokes Equations. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  16. Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G., Lehoucq, R.B., Long, K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thornquist, H.K., Tuminaro, R.S., Willenbring, J.M., Williams, A., Stanley, K.S.: An overview of the Trilinos project. ACM Trans. Math. Softw. 31(3), 397–423 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. International Osteoporosis Organization (2012), http://www.iofbonehealth.org

  18. Lipnikov, K.: Numerical Methods for the Biot Model in Poroelasticity. Ph.D. thesis, University of Houston (2002)

    Google Scholar 

  19. Murphy, M.F., Golub, G.H., Wathen, A.J.: A note on preconditioning for indefinite linear systems. SIAM J. Matrix Anal. Appl. 21(6), 1969–1972 (2000)

    MathSciNet  MATH  Google Scholar 

  20. Paige, C.C., Saunders, M.A.: Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12, 617–629 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  21. METIS-Family of Multilevel Partitioning Algorithms, http://glaros.dtc.umn.edu/gkhome/views/metis

  22. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  23. Sleijpen, G.L.G., van der Vorst, H.A., Modersitzki, J.: Differences in the effects of rounding errors in Krylov solvers for symmetric indefinite linear systems. SIAM J. Matrix Anal. Appl. 22(3), 726–751 (2001)

    Article  Google Scholar 

  24. The Trilinos Project Home Page, http://trilinos.sandia.gov/

  25. Truty, A.: A Galerkin/least-squares finite element formulation for consolidation. Int. J. Numer. Methods Eng. 52, 763–786 (2001)

    Article  MATH  Google Scholar 

  26. Wang, H.F.: Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology. Princeton University Press, Princeton (2000)

    Google Scholar 

  27. White, J.A., Borja, R.I.: Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients. Comput. Methods Appl. Mech. Engrg. 197, 4353–4366 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arbenz, P., Turan, E. (2013). Preconditioning for Large Scale Micro Finite Element Analyses of 3D Poroelasticity. In: Manninen, P., Öster, P. (eds) Applied Parallel and Scientific Computing. PARA 2012. Lecture Notes in Computer Science, vol 7782. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36803-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36803-5_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36802-8

  • Online ISBN: 978-3-642-36803-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics