Skip to main content

Implant Strategies in Orthopedics

  • Living reference work entry
  • First Online:
Sports Injuries
  • 193 Accesses

Abstract

Orthopedic implant technology is carrying on advancing each day and offers different treatments with different materials and technologies. In this chapter, the uses of implants in orthopedics and new approaches like smart implants or surface modifications and stem cell applications are mentioned. Besides, regulations for orthopedic implants and the future of implant sector are explained from the perspective of new and emerging technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abbaszadeh F, Farahmand F, Rahmati S et al (2009) Novel methodology in design of custom-made hip prosthesis. In: Bartolo PJS, Jorge MA, Batista FC et al (eds) Innovative developments in design and manufacturing. CRC Press, Leiria, Portugal

    Google Scholar 

  • Anderson M, Bernero J, Brodke D (2008) Medical imaging characteristics of silicon nitride ceramic a new material for spinal arthroplasty implants. Paper presented at the 8th Annual Spine Arthroplasty Society Global Symposium on Motion Preservation Technology, Miami

    Google Scholar 

  • Bal BS, Rahaman MN (2012) Orthopedic applications of silicon nitride ceramics. Acta Biomaterialia 8(8):2889–2898. Elsevier

    Article  CAS  PubMed  Google Scholar 

  • Bellemans J, Ries MD, Jan VMK (2005) Total knee arthroplasty. In: Bellemans J (ed) Technology, robotics. Springer, Medizin, pp 264–269

    Google Scholar 

  • Bosco R, Beucken JVD, Leeuwenburgh S et al (2012) Surface engineering for bone implants: a trend from passive to active surfaces. Coatings 2:95–119. doi:10.3390/coatings2030095

    Article  CAS  Google Scholar 

  • Bracco P, Oral E (2011) Vitamin E-stabilized UHMWPE for total joint implants: a review. Clin Orthop Relat Res 469(8):2286–2293

    Article  PubMed Central  PubMed  Google Scholar 

  • Brenner SA, Ling JF (2012) Nanotechnology applications in orthopedic surgery. J Nanotechnol Eng Med 3(2):024501. doi:10.1115/1.4006923

    Article  Google Scholar 

  • Bronzino JD (2006) The biomedical engineering handbook, 2nd edn. Springer

    Google Scholar 

  • Burny F, Donkerwolcke M, Moulart F et al (2000) Concept, design and fabrication of smart orthopedic implants. Med Eng Phys 22:469–479

    Article  CAS  PubMed  Google Scholar 

  • Caplan AI (2005) Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng 11(7–8):1198–1211

    Article  CAS  PubMed  Google Scholar 

  • Cheng M (2003) Medical device regulations: global overview and guiding principles. World Health Organization, Geneva

    Google Scholar 

  • Fabio C, Stefano Z (eds) (2013) Knee surgery using computer assisted surgery and robotics. Springer, Berlin\Heidelberg. doi:10.1007/978-3-642-31430-8

    Google Scholar 

  • Feninat FE, Laroche G, Fiset M et al (2002) Shape memory materials for biomedical applications. Adv Eng Mater 4(3):91–104

    Article  Google Scholar 

  • Food and Drug Administration (FDA), US. www.fda.gov. Accessed 10 July 2013

  • Goel VK, Park SH, Llinás A et al (2003) Hard tissue replacements. In: Park JB, Bronzino JD (eds) Biomaterials principles and applications. CRC Press, Boca Raton, pp 173–206

    Google Scholar 

  • Goodman SB, Yao Z, Keeney M et al (2013) The future of biologic coatings for orthopaedic implants. Biomaterials 34(13):3174–3183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Greco F, Mattoli V (2012) Introduction to active smart materials for biomedical applications. In: Ciofani G, Menciassi A (eds) Piezoelectric nanomaterials for biomedical applications, Nanomedicine and nanotoxicology. Springer, Berlin\Heidelberg, pp 1–27

    Chapter  Google Scholar 

  • Hip replacement implant materials. Bone Smart Knee and Hip Replacement Patient Advocacy Organization & online community. www.bonesmart.org. Accessed 15 July 2013

  • Holzapfel BM, Reichert JC, Schantz JT, Gbureck U, Rackwitz L, Nöth U, Jakob F, Rudert M, Groll J, Hutmacher DW (2012) How smart do biomaterials need to be? A translational science and clinical point of view. Adv Drug Deliv Rev. doi:10.1016/j.addr.2012.07.009

    PubMed  Google Scholar 

  • Inan S, Ozbilgin K (2009) Kök hücre: biyolojik ve klinik yaklaşım. SaÄŸlıkta Birikim 1(5):1–10

    Google Scholar 

  • Jung Y, Bauer G, Nolta JA (2012) Concise review: induced pluripotent stem cell-derived mesenchymal stem cells: progress toward safe clinical products. Stem Cells 30(1):42–47. doi:10.1002/stem.727

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Machado LG, Savi MA (2003) Medical applications of shape memory alloys. Braz J Med Biol Res 36:683–691

    CAS  PubMed  Google Scholar 

  • Mahamood RM, Akinlabi ET, Shukla M et al (2012) Functionally graded material: an overview. In: Proceedings of the World Congress on Engineering, July 2012. International Association of Engineers, pp 1593–1597

    Google Scholar 

  • Meneghini RM, Hanssen AD (2008) Cementless fixation in total knee arthroplasty: past, present, and future. J Knee Surg 21(4):307–314

    Article  PubMed  Google Scholar 

  • Miao X, Sun D (2010) Graded/gradient porous biomaterials. Materials 3:26–47. doi:10.3390/Ma3010026

    Article  CAS  Google Scholar 

  • Mirfakhrai T, Madden JDW, Baughman RH (2007) Polymer artificial muscles. Mater Today 10(4):30–38

    Article  CAS  Google Scholar 

  • Nag S, Banerjee R (2012) Fundamentals of medical implant materials. In: Narayan R (ed) ASM handbook, vol 23, Materials for medical devices. ASM International, North Texas, pp 6–17

    Google Scholar 

  • National Institues of Health (NIH). http://stemcells.nih.gov. Accessed 5 June 2013

  • Navarro M, Michiardi A, Castano O et al (2008) Biomaterials in orthopaedics. J R Soc Interface 5(27):1137–1158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • OrthoStreams (2013) 10 Compensation statistics for orthopedic surgeons. http://orthostreams.com/2013/06/10-compensation-statistics-for-orthopedic-surgeons/. Accesssed in 10 Aug 2013

  • Peksen C, Dogan A (2011) Implant dayanımı. TOTBID Dergisi 10(2):122–128

    Google Scholar 

  • Perán M, García MA, Lopez-Ruiz E et al (2013) How can nanotechnology help to repair the body? Advances in cardiac, skin, bone, cartilage and nerve tissue regeneration. Materials 6(4):1333–1359

    Article  Google Scholar 

  • Ponmozhia J, Friasa C, Marquesb T et al (2012) Smart sensors/actuators for biomedical applications: review. Measurement 45(7):1675–1688

    Article  Google Scholar 

  • Richards RG, Moriarty TF, Miclau T et al (2012) Advances in biomaterials and surface technologies. J Orthop Trauma 26(12):703–707. doi:10.1097/BOT.0b013e31826e37a2

    Article  PubMed  Google Scholar 

  • Schmitt A, Griensven MV, Imhoff AB et al (2012) Application of stem cells in orthopedics. Stem Cells Int 2012:394962. doi:10.1155/2012/394962

    Article  PubMed Central  PubMed  Google Scholar 

  • Schwartz M (2002) Encyclopedia of materials, parts and finishes, 2nd edn. CRC Press

    Google Scholar 

  • Smith IO, Liu XH, Smith LA et al (2009) Nanostructured polymer scaffolds for tissue engineering and regenerative medicine. Adv Rev 1:226–236. Wiley

    Google Scholar 

  • Sparmann M, Wolke B (2003) Value of navigation and robot-guided surgery in total knee arthroplasty. Orthopade 32(6):498–505

    CAS  PubMed  Google Scholar 

  • Sylvester KG, Longaker MT (2004) Stem cells: review and update. Arch Surg 139(1):93–99

    Article  PubMed  Google Scholar 

  • Tarniţă D, Tarniţă DN, Bîzdoacă N et al (2009) Properties and medical applications of shape memory alloys. Rom J Morphol Embryol 50(1):15–21

    PubMed  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  PubMed  Google Scholar 

  • Verfaillie CM, Pera MF, Lansdorp PM (2002) Stem cells: hype and reality. Hematology Am Soc Hematol Educ Program (1):369–391

    Google Scholar 

  • Wolf A, Jaramaz B, Mor AB et al (2006) Computer-guided total knee arthroscopy. In: Scuderi GR, Tria AJ, Berger RA (eds) MIS techniques in orthopedics. Springer, New York, pp 390–407

    Chapter  Google Scholar 

  • Zilberman M, Elsner JJ (2008) Antibiotic-eluting medical devices for various applications. J Control Release. doi:10.1016/j.jconrel.2008.05.020. Elsevier

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismet Koksal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Koksal, I. (2014). Implant Strategies in Orthopedics. In: Doral, M., Karlsson, J. (eds) Sports Injuries. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36801-1_273-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36801-1_273-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-36801-1

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics