Skip to main content

Next-Generation Cartilage Solutions

  • Living reference work entry
  • First Online:
Sports Injuries

Abstract

First-generation autologous chondrocyte implantation (ACI) introduced by Peterson has been proven capable of restoring hyaline cartilage tissue. Recent studies suggested the durability of this treatment, primarily due to its ability to produce hyaline-like cartilage that is mechanically and functionally stable. However, ACI requires two surgical procedures and showed local morbidity because of the periosteal harvest; to address these problems, the so-called second-generation ACI technique has been developed, utilizing a three-dimensional matrix seeded with chondrocytes, and the results at medium-term follow-up are well documented; however, it is still a high-cost procedure, and two surgical interventions are required.

Several improvements are soon expected, as the result of the rapidly growing knowledge on cell culture and chondrocyte biology and the positive effect of growth factors in order to have “one-step surgery” for cartilage repair and the use of autologous mesenchymal stem cells (MSCs) in a temporary scaffold could be an improvement on the currently available techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aigner J, Tegeler J, Hutzier P et al (1998) Cartilage tissue engineering with novel non-woven structured biomaterial based on hyaluronic acid benzyl ester. J Biomed Mater Res 42:172–181

    Article  PubMed  CAS  Google Scholar 

  • Ando W, Tateishi K, Nakamura N et al (2008) In vitro generation of a scaffold-free tissue-engineered construct (TEC) derived from human synovial mesenchymal stem cells: biological and mechanical properties and further chondrogenic potential. Tissue Eng (A) 14(12):2041–2049

    Article  CAS  Google Scholar 

  • Ando W, Fujie H, Moriguchi Y et al (2012) Detection of abnormalities in the superficial zone of cartilage repaired using a tissue engineered construct derived from synovial stem cells. Eur Cell Mater 28(24):292–307

    Google Scholar 

  • Anitua E, Sanchez M et al (2007) The potential impact of the preparation rich in growth factors (PRGF) in different medical fields. Biomaterials 28:4551–4560

    Article  PubMed  CAS  Google Scholar 

  • Barry F, Boynton RE, Liu B et al (2001) Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation dependent gene expression of matrix components. Exp Cell Res 268(2):189–200

    Article  PubMed  CAS  Google Scholar 

  • Behrens P, Bitter T, Kurz B et al (2006) Matrix-associated autologous chondrocyte transplantation/ implantation (MATC/MACI)-5-year follow-up. Knee 13:194–202

    Article  PubMed  Google Scholar 

  • Bennett NT, Schultz GS (1993) Growth factors and wound healing: biochemical properties of growth factors and their receptors. Am J Surg 165(6):728–737

    Article  PubMed  CAS  Google Scholar 

  • Bentley G, Biant LC, Carrington RW et al (2003) A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg Br 85(2):223–230

    Article  PubMed  CAS  Google Scholar 

  • Benya PD, Shaffer JD (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30(1):215–224

    Article  PubMed  CAS  Google Scholar 

  • Brittberg M, Winalski C (2003) Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 85-A(Suppl 3):58–69

    PubMed  Google Scholar 

  • Brittberg M, Peterson L, Sjogren-Jansson E et al (2003) Articular cartilage engineering with autologous chondrocyte transplantation. A review of recent developments. J Bone Joint Surg Am 85-A(Suppl 3):109–115

    PubMed  Google Scholar 

  • Brun P, Abatangelo G, Radice M et al (1999) Chondrocyte aggregation and reorganization into three-dimensional scaffolds. J Biomed Mater Res 46:337–346

    Article  PubMed  CAS  Google Scholar 

  • Brun P, Dickinson SC, Abatangelo G et al (2008) Characteristics of repair tissue in second-look and third-look biopsies from patients treated with engineered cartilage: relationship to symptomatology and time after implantation. Arthritis Res Ther 10(6):R132

    Article  PubMed  PubMed Central  Google Scholar 

  • Burstein D, Gray M (2003) New MRI techniques for imaging cartilage. J Bone Joint Surg Am 85-A(Suppl):70–77

    PubMed  Google Scholar 

  • Campoccia D, Doherty P, Radice M et al (1998) Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials 19:2101–2127

    Article  PubMed  CAS  Google Scholar 

  • Chen WJ, Abatangelo G (1999) Functions of hyaluronan in wound repair. Wound Repair Regen 7:79–89

    Article  PubMed  CAS  Google Scholar 

  • Cole B, Farr J (2001) Putting it all together. Oper Tech Orthop 11(2):151–154

    Article  Google Scholar 

  • Cugat R, Carrillo JM, Serra I et al (2006) Articular cartilage defects reconstruction by plasma rich growth factors. In: Basic science, clinical repair and reconstruction of articular cartilage defects: current status and prospects. Timeo Editore, Bologna, pp 801–807

    Google Scholar 

  • Domayer SE, Trattnig S, Stelzeneder D et al (2010) Delayed gadolinium-enhanced MRI of cartilage in the ankle at 3 T: feasibility and preliminary results after matrix-associated autologous chondrocyte implantation. J Magn Reson Imaging 31:732–739

    Article  PubMed  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  PubMed  CAS  Google Scholar 

  • Fortier LA, Nixon AJ, Williams J et al (1998) Isolation and chondrocytic differentiation of equine bone marrow-derived mesenchymal stem cells. Am J Vet Res 59(9):1182–1187

    PubMed  CAS  Google Scholar 

  • Fortier LA, Mohammed HO, Lust G et al (2002) Insulin-like growth factor-I enhances cell-based repair of articular cartilage. J Bone Joint Surg Br 84(2):276–288

    Article  PubMed  CAS  Google Scholar 

  • Fortier LA, Potter HG, Rickey EJ et al (2010) Concentrated bone marrow aspirate improves full-thickness cartilage repair compared with microfracture in the equine model. J Bone Joint Surg Am 92(10):1927–1937

    Article  PubMed  Google Scholar 

  • Fukumoto T, Sperling JW, Sanyal A et al (2003) Combined effects of insulin-like growth factor-1 and transforming growth factorbeta1 on periosteal mesenchymal cells during chondrogenesis in vitro. Osteoarthritis Cartilage 11(1):55–64

    Article  PubMed  CAS  Google Scholar 

  • Giannini S, Buda R, Vannini F et al (2009) One-step bone marrow derived cell transplantation in talar osteochondral lesions. Clin Orthop Relat Res 467:3307–3320

    Article  PubMed  PubMed Central  Google Scholar 

  • Gobbi A, Kon E, Berruto M et al (2006) Patellofemoral full-thickness chondral defects treated with hyalograft- C: a clinical, arthroscopic, and histologic review. Am J Sports Med 34:1763–1773

    Article  PubMed  Google Scholar 

  • Gobbi A, Kon E, Filardo G et al (2009) Patellofemoral full-thickness chondral defects treated with second generation ACI: a clinical review at 5 years follow-up. Am J Sports Med 37(6):1083–1092

    Article  PubMed  Google Scholar 

  • Gobbi A, Karnatzikos G, Scotti C et al (2011a) One-step cartilage repair with bone marrow aspirate concentrated cells and collagen matrix in full-thickness knee cartilage lesions: results at 2 year follow up. Cartilage 2(3):286–299

    Article  Google Scholar 

  • Gobbi A, Karnatzikos G, Malchira S et al (2011b) The use of pulsed electromagnetic fields in symptomatic patients with degenerative cartilage lesions of the knee: a preliminary report. J Sports Traumatol 28(4):91–97

    Google Scholar 

  • Gobbi A, Karnatzikos G, Mahajan V (2012a) Biologic arthroplasty. In: Brittberg M et al (eds) Cartilage repair: clinical guidelines. DJO Publications, Guilford, pp 269–279

    Google Scholar 

  • Gobbi A, Karnatzikos G, Mahajan V, Malchira S (2012b) Platelet-rich plasma treatment in symptomatic patients with knee osteoarthritis: preliminary results in a group of active patients. Sports Health 4(2):162–172

    Article  PubMed  PubMed Central  Google Scholar 

  • Gobbi A, Karnatzikos G, Kumar A (2014c) Long-term results after microfracture treatment for full-thickness knee chondral lesions in athletes. Knee Surg Sports Traumatol Arthrosc 22(9):1986–96. doi: 10.1007/s00167-013-2676-8

    Google Scholar 

  • Gobbi A, Lad D, Petrera M, Karnatzikos G (2014a) Symptomatic early osteoarthritis treated with pulsed electromagnetic fields: 2 years follow-up. Cartilage 5(2):6–83. doi:10.1177/ 1947603513515904

    Article  Google Scholar 

  • Gobbi A, Karnatzikos G, Sankineani SR (2014b) One-step surgery with multipotent stem cells for the treatment of large full-thickness chondral defects of the knee. Am J Sports Med 42:648–657. doi:10.1177/036354651351800715

    Article  PubMed  Google Scholar 

  • Grigolo B, Lisignoli G, Desando G et al (2009) Osteoarthritis treated with MSC on hyaluronan-based scaffold in rabbit. Tissue Eng Part C Methods 15(4):647–658

    Article  PubMed  CAS  Google Scholar 

  • Hangody L, Fules P (2003) Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints. J Bone Joint Surg Am 85-A(Suppl 3):25–32

    PubMed  Google Scholar 

  • Hangody L, Kish G, Karpati Z et al (1998) Mosaicplasty for the treatment of articular cartilage defects: application in clinical practice. Orthopaedics 21:751–756

    CAS  Google Scholar 

  • Henderson I, Francisco R, Oakes B et al (2005) Autologous chondrocyte implantation for treatment of focal chondral defects of the Knee: a clinical, arthroscopic, MRI and histologic evaluation at 2 years. Knee 12(3):209–216

    Article  PubMed  Google Scholar 

  • Hui JH, Chen F, Thambyah A, Lee EH (2004) Treatment of chondral lesions in advanced osteochondritis dissecans: a comparative study of the efficacy of chondrocytes, mesenchymal stem cells, periosteal graft, and mosaicplasty (osteochondral autograft) in animal models. J Pediatr Orthop 24:427–433

    Article  PubMed  Google Scholar 

  • Hunter W (1995) Of the structure and disease of articulating cartilages. 1743. Clin Orthop Relat Res 317:3–6

    PubMed  Google Scholar 

  • Hunziker EB (2002) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartil 10(6):432–463, Review

    Article  PubMed  CAS  Google Scholar 

  • Johnstone B, Hering TM, Caplan AI et al (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238(1):265–272

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Ochi M, Yanada S et al (2008) A novel cell delivery system using magnetically labeled mesenchymal stem cells and an external magnetic device for clinical cartilage repair. Arthroscopy 24(1):69–76

    Article  PubMed  Google Scholar 

  • Kon E, Gobbi A, Filardo G et al (2009) Arthroscopic second-generation ACI compared with microfractures for chondral lesions of the knee. Am J Sports Med 37:33

    Article  PubMed  Google Scholar 

  • Kon E, Buda R, Filardo G et al (2010) Platelet-rich plasma: intraarticular knee injections produced favorable results on degenerative cartilage lesions. Knee Surg Sports Traumatol Arthrosc 18(4):472–479

    Article  PubMed  Google Scholar 

  • Mackay AM, Beck SC, Murphy JM et al (1998) Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng 4(4):415–428

    Article  PubMed  CAS  Google Scholar 

  • Mainil-Varlet P, Aigner T, Brittberg M et al (2003) Histological assessment of cartilage repair. A report by the histology endpoint committee of the ICRS. J Bone Joint Surg Am 85-A(Suppl 2):45–57

    PubMed  Google Scholar 

  • Mandelbaum B, Browne JE, Fu F et al (2007) Treatment outcomes of autologous chondrocyte implantation for full-thickness articular cartilage defects of the trochlea. Am J Sports Med 35(6):915–921

    Article  PubMed  Google Scholar 

  • Marcacci M, Zaffagnini S, Kon E et al (2002) Arthroscopic autologous chondrocyte transplantation: technical note. Knee Surg Sports Traumatol Arthrosc 10:154–159

    Article  PubMed  CAS  Google Scholar 

  • Marcacci M, Berruto M, Gobbi A, Kon E et al (2005) Articular cartilage engineering with Hyalograft C: 3-year clinical results. Clin Orthop Relat Res 435:96–105

    Article  PubMed  Google Scholar 

  • Massari L, Benazzo F, De Mattei M, Setti S, Fini M, CRES study group (2007) Effects of electrical physical stimuli on articular cartilage. J Bone Joint Surg Am 89(Suppl 3):152–161, Review

    Article  PubMed  Google Scholar 

  • McKinley BJ, Cushner FD, Scott WN (1999) Debridement arthroscopy. 10-year follow-up. Clin Orthop 367:190–194

    Google Scholar 

  • Milano G, Sanna Passino E, Deriu L et al (2010) The effect of platelet rich plasma combined with microfractures on the treatment of chondral defects: an experimental study in a sheep model. Osteoarthritis Cartilage 18(7):971–980

    Article  PubMed  CAS  Google Scholar 

  • Miller M, Cole B (2001) Atlas of chondral injury treatment. Oper Tech Orthop 11(2):145–150

    Article  Google Scholar 

  • Miller M, Howard R, Plancher K (2003) Treatment of chondral injuries and defects. In: Surgical atlas of sports medicine. Saunders, Philadelphia, pp 110–115

    Google Scholar 

  • Minas T, Peterson L (1999) Advanced techniques in autologous chondrocyte transplantation. Clin Sports Med 18(1):13–44

    Article  PubMed  CAS  Google Scholar 

  • Minas T, Gomoll AH, Rosenberger R et al (2009) Increased failure rate of autologous chondrocyte implantation after previous treatment with marrow stimulation techniques. Am J Sports Med 37(5):902–908

    Article  PubMed  Google Scholar 

  • Sudo K, Kanno M, Miharada K et al. (2007). Mesenchymal progenitors able to differentiate into osteogenic, chondrogenic, and/or adipogenic cells in vitro are present in most primary fibroblast-like cell populations. Stem Cells 25(7):1610–7

    Article  PubMed  CAS  Google Scholar 

  • Nakamura N, Miyama T, Engebretsen L et al (2009) Cell-based therapy in articular cartilage lesions of the knee. Arthroscopy 25(5):531–552

    Article  PubMed  Google Scholar 

  • Nakamura T, Sekiya I, Muneta T et al (2012) Arthroscopic, histological and MRI analyses of cartilage repair after a minimally invasive method of transplantation of allogeneic synovial mesenchymal stromal cells into cartilage defects in pigs. Cytotherapy 14(3):327–338

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nakamura N, Hui J, Koizumi K et al (2014) Stem cell therapy in cartilage repair – culture-free and cell culture-based methods. Oper Tech Orthop 24:54–60. doi:10.1053/ j.oto.2014.02.006

    Article  Google Scholar 

  • Nehrer S, Domayer S, Dorotka R et al (2006) Three-year clinical outcome after chondrocyte transplantation using a hyaluronan matrix for cartilage repair. Eur J Radiol 57:3–8

    Article  PubMed  CAS  Google Scholar 

  • Nishimoto S, Oyama T, Matsuda K (2007) Simultaneous concentration of platelets and marrow cells: a simple and useful technique to obtain source cells and growth factors for regenerative medicine. Wound Repair Regen 15(1):156–162

    Article  PubMed  Google Scholar 

  • Nixon AJ, Wilke MM, Nydam DV (2007) Enhanced early chondrogenesis in articular defects following arthroscopic mesenchymal stem cell implantation in an equine model. J Orthop Res 25(7):913–925

    Article  PubMed  Google Scholar 

  • Ochi M, Adachi N, Nobuto H et al (2004) Articular cartilage repair using tissue engineering technique: novel approach with minimally invasive procedure. Artif Organs 28(1):28–32

    Article  PubMed  Google Scholar 

  • Ochi M, Kanaya A, Nishimori M (2007) Cell therapy for promotion of cartilage regeneration after drilling and ACL healing. In: 6th Biennial ISAKOS congress, Florence

    Google Scholar 

  • Pavesio A, Abatangelo G, Borrione A et al (2003) Hyaluronan-based scaffolds (Hyalograft ®C) in the treatment of knee cartilage defects: preliminary clinical findings. Novartis Found Symp 249:203–217

    Article  PubMed  Google Scholar 

  • Pavesio Α, Abatangelo G, Borrione A et al (2004) Hyaluronan-based scaffolds (Hyalograft ®C) in the treatment of knee cartilage defects: clinical results. Tissue Eng Musculoskelet Clin Pract AAOS 8:73–83

    Google Scholar 

  • Peretti GM, Zaporojan V, Spangenberg KM et al (2003) Cell-based bonding of articular cartilage: an extended study. J Biomed Mater Res 64A(3):517–524

    Article  CAS  Google Scholar 

  • Peterson L, Brittberg M, Kiviranta I et al (2002) Autologous chondrocyte transplantation. Biomechanics and long-term durability. Am J Sports Med 30:2–12

    PubMed  Google Scholar 

  • Peterson L, Minas T, Brittberg M et al (2003) Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation: results at 2–10 years. J Bone Joint Surg Am 85-A(Suppl 3):17–24

    PubMed  Google Scholar 

  • Peterson L, Vasiliadis HS, Brittberg M et al (2010) Autologous chondrocyte implantation: a long-term follow-up. Am J Sports Med 38(6):1117–1124

    Article  PubMed  Google Scholar 

  • Poole R (2003) What type of cartilage repair are we attempting to attain? J Bone Joint Surg Am 85-A(Suppl 2):40–44

    PubMed  Google Scholar 

  • Potter H, Foo L et al (2007) MRI and articular cartilage. Evaluating lesions and post repair tissue. In: Potter H, Foo L (eds) Cartilage repair strategies. Humana Press (Springer), Berlin/Heidelberg

    Google Scholar 

  • Robert BD (1994) The clinical and laboratory utility of platelet volume parameters. Aust J Med Sci 14:625–641

    Google Scholar 

  • Robey PG, Bianco P (2006) The use of adult stem cells in rebuilding the human face. J Am Dent Assoc 137(7):961–972 (Review)

    Article  PubMed  CAS  Google Scholar 

  • Saris DBF, Vanlauwe J, Victor J et al (2008) CCI results in better structural repair when treating symptomatic cartilage defects of the knee in a randomised clinical trial versus microfracture. Am J Sports Med 36(2):235–246

    Article  PubMed  Google Scholar 

  • Sgaglione NA, Miniaci A, Gillogly SD et al (2002) Update on advanced surgical techniques in the treatment of traumatic focal articular cartilage lesions in the knee. Arthroscopy 18(Suppl 1):9–32

    Article  PubMed  Google Scholar 

  • Solchaga LA, Yoo JU, Lundberg M et al (2000) Hyaluronan-based Polymers in the treatment of osteochondral defects. J Orthop Res 18:773–780

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  PubMed  CAS  Google Scholar 

  • Tateishi K, Ando W, Nakamura N et al (2008) Comparison of human serum with fetal bovine serum for expansion and differentiation of human synovial MSC: potential feasibility for clinical applications. Cell Transplant 17(5):549–557

    Article  PubMed  CAS  Google Scholar 

  • Wakitani S, Imoto K, Yamamoto T et al (2002) Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage 10(3):199–206

    Article  PubMed  CAS  Google Scholar 

  • Wakitani S, Yokoyama M, Miwa H et al (2008) Influence of fetal calf serum on differentiation of mesenchymal stem cells to chondrocytes during expansion. J Biosci Bioeng 106(1):46–50

    Article  PubMed  Google Scholar 

  • Yan H, Yu C (2007) Repair of full-thickness cartilage defects with cells of different origin in a rabbit model. Arthroscopy 23:178–187

    Article  PubMed  Google Scholar 

  • Yanada S, Ochi M, Adachi N et al (2006) Effects of CD44 antibody – or RGDS peptide – immobilized magnetic beads on cell proliferation and chondrogenesis of mesenchymal stem cells. J Biomed Mater Res A 77(4):773–784

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norimasa Nakamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Nakamura, N., Gobbi, A., Karnatzikos, G. (2014). Next-Generation Cartilage Solutions. In: Doral, M., Karlsson, J. (eds) Sports Injuries. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36801-1_155-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36801-1_155-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-36801-1

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics