Skip to main content

Xylem Development in Trees: From Cambial Divisions to Mature Wood Cells

  • Chapter
  • First Online:
Cellular Aspects of Wood Formation

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 20))

Abstract

As one of the major parts of the biosphere, trees will play a significant role in the near future because of an increasing demand for wood as the most important natural raw material. Wood is generated by the vascular cambium and enables water transportation as well as providing mechanical support to the tree. Furthermore, it is the main renewable source for paper, buildings, furniture, boards and fuel. In recent decades intriguing developments in cell, molecular and structural biology have led to an integrated view of wood formation, from its start in the cambium by cell division, via cell expansion and cell wall thickening, to programmed cell death. These complex processes involve the interaction of both exogenous factors, such as photoperiod and temperature, and endogenous regulators, such as phytohormones. In addition, the coordinated expression of the numerous genes implicated in the biosynthesis of the major wood components—cellulose, hemicelluloses and lignin—drives the ordered development of wood. The huge amount of literature in the different fields of wood formation cannot be reviewed here in detail; rather, the aim of this chapter is to give a brief overview of the essential steps leading to mature wood cells, with an emphasis on current progress obtained by modern techniques which have increased our understanding of wood formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbe LB, Crafts AS (1939) Phloem of white pine and other coniferous species. Bot Gaz 100:695–722

    Google Scholar 

  • Ache P, Fromm J, Hedrich R (2010) Potassium-dependent wood formation in poplar: seasonal aspects and environmental limitations. Plant Biol 12:259–267

    PubMed  CAS  Google Scholar 

  • Allona I, Quinn M, Shoop E, Swope K, St. Cyr S, Carlis J, Riedl J, Retzel E, Campbell MM, Sederoff R, Whetten RW (1998) Analysis of xylem formation in pine by cDNA sequencing. Proc Natl Acad Sci USA 95:9693–9698

    PubMed  CAS  Google Scholar 

  • Alves ES, Angyalossy-Alfonso V (2000) Ecological trends in the wood anatomy of some Brazilian species. 1. Growth rings and vessels. IAWA J 21:3–30

    Google Scholar 

  • Arend M, Fromm J (2000) Seasonal variation in the K, Ca and P content and distribution of plasma membrane H+-ATPase in the cambium of Populus trichocarpa. In: Savidge RA, Barnett JR, Napier R (eds) Cell and molecular biology of wood formation. BIOS Scientific Publishers, Oxford, pp 67–70

    Google Scholar 

  • Arend M, Fromm J (2003) Ultrastructural changes in cambial cell derivatives during xylem differentiation in poplar. Plant Biol 5:255–264

    Google Scholar 

  • Arend M, Fromm J (2004) Die Rolle von Kalium und H+-ATPasen bei der Holzbildung. AFZ-DerWald 19:1032–1033

    Google Scholar 

  • Arend M, Weisenseel MH, Brummer M, Osswald W, Fromm J (2002) Seasonal changes of plasma membrane H+-ATPase and endogenous ion current during cambial growth in poplar plants. Plant Phys 129:1651–1663

    CAS  Google Scholar 

  • Arend M, Monshausen G, Wind C, Weisenseel MH, Fromm J (2004) Effect of potassium deficiency on the plasma membrane H+-ATPase of the wood ray parenchyma in poplar. Plant Cell Environ 27:1288–1296

    CAS  Google Scholar 

  • Arend M, Stinzing A, Wind C, Langer K, Latz A, Ache P, Fromm J, Hedrich R (2005) Polar-localised poplar K+ channel capable of controlling electrical properties of wood-forming cells. Planta 223:140–148

    PubMed  CAS  Google Scholar 

  • Arend M, Muninger M, Fromm J (2008) Unique occurrence of pectin-like fibrillar cell wall deposits in xylem fibres of poplar. Plant Biol 10:763–770

    PubMed  CAS  Google Scholar 

  • Arend M, Schnitzler J-P, Ehlting B, Hänsch R, Lange T, Rennenberg H, Himmelbach A, Grill E, Fromm J (2009) Expression of the Arabidopsis mutant abi1 gene alters abscisic acid sensitivity, stomatal development, and growth morphology in gray poplars. Plant Phys 151:2110–2119

    CAS  Google Scholar 

  • Aspeborg H, Schrader J, Coutinho PM, Stam M, Kallas Å, Nilsson P, Denman S, Amini B, Sterky F, Master E et al (2005) Carbohydrate-active enzymes involved in the secondary cell wall biogenesis in hybrid aspen. Plant Physiol 137:983–997

    PubMed  CAS  Google Scholar 

  • Avci U, Earl Petzold H, Ismail IO, Beers EP, Haigler CH (2008) Cysteine proteases XCP1 and XCP2 aid micro-autolysis within the intact central vacuole during xylogenesis in Arabidopsis roots. Plant J 56:303–315

    PubMed  CAS  Google Scholar 

  • Avery GS, Burkholder PR, Creighton HB (1937) Production and distribution of growth hormone in shoots of Aesculus and Malus, and its probable role in stimulating cambial activity. Am J Bot 24:51–58

    CAS  Google Scholar 

  • Awano T, Takabe K, Fujita M, Daniel G (2000) Deposition of glucuronoxylans on the secondary cell wall of Japanese beech as observed by immune-scanning electron microscopy. Protoplasma 212:72–79

    CAS  Google Scholar 

  • Baba K, Karlberg A, Schmidt J, Schrader J, Hvidsten TR, Bako L, Bhalerao RP (2011) Activity-dormancy transition in the cambial meristem involves stage-specific modulation of auxin response in hybrid aspen. Proc Nat Acad Sci USA 108:3418–3423

    PubMed  CAS  Google Scholar 

  • Baier M, Goldberg R, Catesson A-M, Liberman M, Bouchemal N, Michon V, Herve du Penhoat C (1994) Pectin changes in samples containing poplar cambium and inner bark in relation to the seasonal cycle. Planta 193:446–454

    CAS  Google Scholar 

  • Bannan MW (1955) The vascular cambium and radial growth in Thuja occidentalis L. Can J Bot 33:113–138

    Google Scholar 

  • Baskin TI (2001) On the alignment of cellulose microfibrils by cortical microtubules: a review and a model. Protoplasma 215:150–171

    PubMed  CAS  Google Scholar 

  • Baumann MJ, Eklof JM, Michel G, Kallas AM, Teeri TT, Czjzek M, Brumer H (2007) Structural evidence for the evolution of xyloglucanase activity from xyloglucan endotransglycosylases: biological implications for cell wall metabolism. Plant Cell 19:1947–1963

    PubMed  CAS  Google Scholar 

  • Begum S, Nakaba S, Oribe Y, Kubo T, Funada R (2007) Induction of cambial reactivation by localized heating in a deciduous hardwood hybrid poplar (Populus sieboldii × P. grandidentata). Ann Bot 100:439–447

    PubMed  Google Scholar 

  • Begum S, Nakaba S, Oribe Y, Kubo T, Funada R (2010) Changes in the localization and levels of starch and lipids in cambium and phloem during cambial reactivation by artificial heating of main stems of Cryptomeria japonica trees. Ann Bot 106:885–895

    PubMed  CAS  Google Scholar 

  • Bertaud F, Holmbom B (2004) Chemical composition of earlywood and latewood in Norway spruce heartwood, sapwood and transition zone wood. Wood Sci Tech 38:245–256

    CAS  Google Scholar 

  • Bhaudari S, Fujino T, Thammanagowda S, Zhang DY, Xu FY, Joshi CP (2006) Xylem-specific and tension stress-responsive coexpression of KORRIGAN endoglucanase and three secondary wall-associated cellulose synthase genes in aspen trees. Planta 224:828–837

    Google Scholar 

  • Bishopp A, Lehesranta S, Vatén A, Help H, El-Showk S, Scheres B, Helariutta K, Mähönen AP, Sakakibara H, Helariutta Y (2011) Phloem-transported cytokinin regulates polar auxin transport and maintains vascular pattern in the root meristem. Curr Biol 21:927–932

    PubMed  CAS  Google Scholar 

  • Bissett IJW, Dadswell HE (1950) The variation in cell length within one growth ring of certain angiosperms and gymnosperms. Aust For 14:17–29

    Google Scholar 

  • Björklund S, Antti H, Uddestrand I, Moritz T, Sundberg B (2007) Cross-talk between gibberellin and auxin in development of Populus wood: gibberellin stimulate polar auxin transport and has a common transcriptome with auxin. Plant J 52:499–511

    PubMed  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54(1):519–546

    PubMed  CAS  Google Scholar 

  • Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043

    PubMed  Google Scholar 

  • Bollhöner B, Prestele J, Tuominen H (2012) Xylem cell death: emerging understanding of regulation and function. J Exp Bot 63(3):1081–1094

    PubMed  Google Scholar 

  • Brett CT (2000) Cellulose microfibrils in plants: biosynthesis, deposition, and integration into the cell wall. Int Rev Cytol 199:161–199

    PubMed  CAS  Google Scholar 

  • Brett C, Waldron K (1990) Physiology and biochemistry of plant cell walls. Unwin Hyman, London

    Google Scholar 

  • Brienen RJW, Zuidema PA (2005) Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis. Oecologia 146:1–12

    PubMed  Google Scholar 

  • Catesson A-M (1989) Specific characters of vessel primary walls during the early stages of wood differentiation. Biol Cell 67:221–226

    Google Scholar 

  • Catesson A-M (1990) Cambial cytology and biochemistry. In: Iqbal M (ed) The vascular cambium, vol 7, Research studies in botany and related applied fields. Research Studies Press, Taunton, MA, pp 63–112

    Google Scholar 

  • Catesson A-M (1994) Cambial ultrastructure and biochemistry: changes in relation to vascular tissue differentiation and the seasonal cycle. Int J Plant Sci 155:251–261

    CAS  Google Scholar 

  • Catesson A-M, Roland JC (1981) Sequential changes associated with cell wall formation and fusion in the vascular cambium. IAWA Bull 2:151–162

    Google Scholar 

  • Catesson A-M, Funada R, Robertbaby D, Quinetszely M, Chuba J, Goldberg R (1994) Biochemical and cytochemical cell-wall changes across the cambial zone. IAWA J 15:91–101

    Google Scholar 

  • Chaffey N (1999) Cambium: old challenges – new opportunities. Trees 13:138–151

    Google Scholar 

  • Chaffey NF, Barnett JR, Barlow PW (1998) A cycle of microtubule rearrangement accompanies the seasonal cycle of wall thickening within the vascular cambium of Aesculus hippocastanum L. taproots. New Phytol 139:623–635

    Google Scholar 

  • Chaffey N, Barnett J, Barlow P (1999) A cytoskeletal basis for wood formation in angiosperm trees: the involvement of cortical microtubules. Planta 208:19–30

    CAS  Google Scholar 

  • Chaffey N, Cholewa E, Regan S, Sundberg B (2002) Secondary xylem development in Arabidopsis: a model for wood formation. Physiol Plant 114:594–600

    PubMed  CAS  Google Scholar 

  • Chiang VL (2006) Monolignol biosynthesis and genetic engineering of lignin in trees, a review. Environ Chem Lett 4(3):143–146

    CAS  Google Scholar 

  • Clark A, Daniels RF, Jordan L (2006) Juvenile/mature wood transition in loblolly pine as defined by annual ring specific gravity, proportion of latewood, and microfibril angle. Wood Fiber Sci 38:292–299

    CAS  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6(11):850–861

    PubMed  CAS  Google Scholar 

  • Courtois-Moreau CL, Pesquet E, Sjodin A, Muniz L, Bollhöner B, Kaneda M, Samuels L, Jansson S, Tuominen H (2009) A unique program for cell death in xylem fibers of Populus stem. Plant J 58:260–274

    PubMed  CAS  Google Scholar 

  • Del Campillo E (1999) Multiple endo-1,4-D-glucanase (cellulase) genes in Arabidopsis. Curr Top Dev Biol 46:39–61

    PubMed  Google Scholar 

  • Djerbi S, Aspeborg H, Nilsson P, Sundberg B, Mellerowicz E, Blomqvist K, Teeri TT (2004) Identification and expression analysis of genes encoding putative cellulose synthases (CesA) in the hybrid aspen, Populus tremula (L.) × P. tremuloides (Michx.). Cellulose 11:301–312

    CAS  Google Scholar 

  • Djerbi S, Lindskog M, Arvestad L, Sterky F, Teeri TT (2005) The genome sequence of black cottonwood (Populus trichocarpa) reveals 18 conserved cellulose synthase (CesA) genes. Planta 221:739–746

    PubMed  CAS  Google Scholar 

  • Donaldson L (2007) Cellulose microfibril aggregates and their size variation with cell wall type. Wood Sci Technol 41:443–460

    CAS  Google Scholar 

  • Druart N, Johansson A, Baba K, Schrader J, Sjödin A, Bhalerao RR, Resman L, Trygg J, Moritz T, Bhalerao RP (2007) Environmental and hormonal regulation of the activity-dormancy cycle in the cambial meristem involves stage-specific modulation of transcriptional and metabolic networks. Plant J 50:557–573

    PubMed  CAS  Google Scholar 

  • Endo S, Pesquet E, Tashiro G, Kuriyama H, Goffner D, Fukuda H, Demura T (2008) Transient transformation and RNA silencing in Zinnia tracheary element differentiating cell cultures. Plant J 53:864–875

    PubMed  CAS  Google Scholar 

  • Eriksson ME, Israelsson M, Olsson O, Moritz T (2000) Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol 18:784–788

    PubMed  CAS  Google Scholar 

  • Ermel FF, Follet-Gueye M-L, Cibert C, Vian B, Morvan C, Catesson A-M, Goldberg R (2000) Differential localization of arabinan and galactan side chains of rhamnogalacturonan 1 in cambial derivatives. Planta 210:732–740

    PubMed  CAS  Google Scholar 

  • Espinosa-Ruiz A, Saxena S, Schmidt J, Mellerowicz E, Miskolczi P, Bako L, Bhalerao R (2004) Differential stage-specific regulation of cyclin-dependent kinases during cambial dormancy in hybrid aspen. Plant J 38:603–615

    PubMed  CAS  Google Scholar 

  • Farrar JJ, Evert RF (1997) Seasonal changes in the ultrastructure of the vascular cambium of Robinia pseudoacacia. Trees 11:191–202

    Google Scholar 

  • Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci USA 108:E1195–E1203

    PubMed  Google Scholar 

  • Fisher K, Turner S (2007) PXY, a receptor–like kinase essential for maintaining polarity during plant vascular-tissue development. Curr Biol 17:1061–1066

    PubMed  CAS  Google Scholar 

  • Follet-Gueye ML, Verdus MC, Demarty M, Thellier M, Ripoll C (1998) Cambium pre-activation in beech correlates with a strong temporary increase of calcium in cambium and phloem but not in xylem cells. Cell Calcium 24(3):205–211

    PubMed  CAS  Google Scholar 

  • Follet-Gueye ML, Ermel FF, Vian B, Catesson A-M, Goldberg R (2000) Pectin remodeling during cambial derivative differentiation. In: Savidge RA, Barnett JR, Napier R (eds) Cell and molecular biology of wood formation. BIOS Scientific Publishers, Oxford, pp 289–294

    Google Scholar 

  • Foucart C, Paux E, Ladouce N, San-Clemente H, Grima-Pettenati J, Sivadon P (2006) Transcript profiling of a xylem vs phloem cDNA subtractive library identifies new genes expressed during xylogenesis in Eucalyptus. New Phytol 170:739–752

    PubMed  CAS  Google Scholar 

  • Fromm J (1997) Hormonal physiology of wood growth in willow (Salix viminalis L.): effects of spermine and abscisic acid. Wood Sci Technol 31:119–130

    CAS  Google Scholar 

  • Fromm J (2010) Wood formation of trees in relation to potassium and calcium nutrition. Tree Phys 30:1140–1147

    CAS  Google Scholar 

  • Fromm J, Hedrich R (2007) The role of potassium in wood formation of poplar. In: Sattelmacher B, Horst WJ (eds) The Apoplast of higher plants: compartment of storage, transport and reactions. Springer, New York, pp 137–149

    Google Scholar 

  • Fromm J, Sautter I, Matthies D, Kremer J, Schumacher P, Ganter C (2001) Xylem water content and wood density in spruce and oak trees detected by high-resolution computed tomography. Plant Phys 127:416–425

    CAS  Google Scholar 

  • Fromm J, Rockel B, Lautner S, Windeisen E, Wanner G (2003) Lignin distribution in wood cell walls determined by TEM and backscattered SEM techniques. J Struct Biol 143:77–84

    PubMed  CAS  Google Scholar 

  • Fuchs M, Ehlers K, Will T, van Bel AJE (2010a) Immunolocalization indicates plasmodesmal trafficking of storage proteins during cambial reactivation in Populus nigra. Ann Bot 106:385–394

    PubMed  CAS  Google Scholar 

  • Fuchs M, van Bel AJE, Ehlers K (2010b) Season-associated modifications in symplasmic organization of the cambium in Populus nigra. Ann Bot 105:375–387

    PubMed  Google Scholar 

  • Fujino T, Itoh T (1998) Changes in the three dimensional architecture of the cell wall during lignifications of xylem cells in Eucalyptus tereticornis. Holzforschung 52:111–116

    CAS  Google Scholar 

  • Fukuda H (1996) Xylogenesis: initiation, progression and cell death. Annu Rev Plant Physiol Plant Mol Biol 47:299–325

    PubMed  CAS  Google Scholar 

  • Fukuda H (1997) Tracheary element differentiation. Plant Cell 9:1147–1156

    PubMed  CAS  Google Scholar 

  • Fukuda H (2004) Signals that control plant vascular cell differentiation. Nat Rev 5:379–391

    CAS  Google Scholar 

  • Funada R, Catesson A-M (1991) Partial cell wall lysis and the resumption of meristematic activity in Fraxinus excelsior cambium. IAWA Bull ns 12:439–444

    Google Scholar 

  • Funada R, Abe H, Furusawa O, Imaizumi H, Fukuzawa K, Ohtani J (1997) The orientation and localization of cortical microtubules in differentiating conifer tracheids during cell expansion. Plant Cell Physiol 38(2):210–212

    CAS  Google Scholar 

  • Funada R, Kubo T, Tabuchi M, Sugiyama T, Fushitani M (2001) Seasonal variations in endogenous indole-3-acetic acid and abscisic acid in the cambial region of Pinus densiflora Sieb. Et Zucc. stems in relation to earlywood-latewood transition and cessation of tracheid production. Holzforschung 55:128–134

    CAS  Google Scholar 

  • Geisler-Lee J, Geisler M, Coutinho PM, Segerman B, Nishikubo N, Takahashi J, Aspeborg H, Djerbi S, Master E, Andersson-Gunnerås S et al (2006) Poplar carbohydrate-active enzymes (CAZymes). Gene identification and expression analyses. Plant Physiol 140:946–962

    PubMed  CAS  Google Scholar 

  • Ghouse AKM, Hashmi S (1983) Periodicity of cambium and of the formation of xylem and phloem in Mimusops elengi L., an evergreen member of tropical India. Flora 173:479–487

    Google Scholar 

  • Gion JM, Carouché A, Deweer S, Bedon F, Pichavant F, Charpentier JP, Baillères H, Rozenberg P, Carocha V, Ognouabi N et al (2011) Comprehensive genetic dissection of wood properties in a widely-grown tropical tree: Eucalyptus. BMC Genomics 12:301

    PubMed  Google Scholar 

  • González-Martínez SC, Wheeler NC, Ersoz E, Nelson CD, Neale DB (2006) Association genetics in Pinus taeda L. I. Wood property traits. Genetics 175:399–409

    PubMed  Google Scholar 

  • Goué N, Lesage-Descauses M-C, Mellerowicz EJ, Magel E, Label P, Sundberg B (2008) Microgenomic analysis reveals cell type-specific gene expression patterns between ray and fusiform initials within the cambial meristem of Populus. New Phytol 180:45–56

    PubMed  Google Scholar 

  • Gregory RA (1971) Cambial activity in Alaskan white spruce. Am J Bot 58:160–171

    Google Scholar 

  • Gregory ACE, O’Connell AP, Bolwell GP (1998) Xylans. Biotechnol Genet Eng Rev 15:439–455

    CAS  Google Scholar 

  • Groover A, Jones AM (1999) Tracheary element differentiation uses a novel mechanism coordinating programmed cell death and secondary cell wall synthesis. Plant Physiol 119:375–384

    PubMed  CAS  Google Scholar 

  • Groover A, DeWitt N, Heidel A, Jones A (1997) Programmed cell death of plant tracheary elements differentiating in vitro. Protoplasma 196:197–211

    Google Scholar 

  • Haigler CH, Brown RM Jr (1986) Transport of rosettes from the Golgi apparatus to the plasma membrane in isolated mesophyll cells of Zinnia elegans during differentiation to tracheary elements in suspension culture. Protoplasma 134:111–120

    Google Scholar 

  • Harada H, Coté WA Jr (1985) Structure of wood. In: Biosynthesis and biodegradation of wood components. Academic, Orlando, FL, pp 1–44

    Google Scholar 

  • Heath IB (1974) A unified hypothesis for the role of membrane bound enzyme complexes and microtubules in plant cell wall synthesis. J Theor Biol 48:445–449

    PubMed  CAS  Google Scholar 

  • Heide O (1993) Daylength and thermal time responses of bud burst during dormancy release in some northern deciduous trees. Physiol Plant 88:531–540

    Google Scholar 

  • Hejnowicz A, Hejnowicz Z (1958) Variation of length of vessel members and fibres in the trunk of Populus tremula L. Acta Soc Bot Pol 27:131–159

    Google Scholar 

  • Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I, Ogawa M, Sawa S, Ohashi-Ito K, Matsubayashi Y, Fukuda H (2008) Non-cell autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proc Natl Acad Sci USA 105:15208–15213

    PubMed  CAS  Google Scholar 

  • Hoenicka H, Lautner S, Klingberg A, Koch G, El-Sherif F, Lehnhardt D, Zhang B, Burgert I, Odermatt J, Melzer S, Fromm J, Fladung M (2012) Influence of over-expression of the FLOWERING PROMOTING FACTOR 1 gene (FPF1) from Arabidopsis on wood formation in hybrid poplar (Populus tremula L. × P. tremuloides Michx.). Planta 235:359–373

    PubMed  CAS  Google Scholar 

  • Holland N, Holland D, Helentjaris T, Dhugga KS, Xoconostle-Cazares B, Delmer DP (2000) A comparative analysis of the plant cellulose synthase (CesA) gene family. Plant Phys 123:1313–1323

    CAS  Google Scholar 

  • Hoson T (1991) Structure and function of plant cell walls: immunological approaches. Int Rev Cytol 130:233–268

    CAS  Google Scholar 

  • Hou H-W, Zhou Y-T, Mwange K-N, Li W-F, He X-Q, Cui K-M (2006) ABP1 expression regulated by IAA and ABA is associated with the cambium periodicity in Eucommia ulmoides Oliv. J Exp Bot 57(14):3857–3867

    PubMed  CAS  Google Scholar 

  • Ingold E, Sugiyama M, Komamine A (1988) Secondary cell wall formation: changes in cell wall constituents during the differentiation of isolated mesophyll cells of Zinnia elegans to tracheary elements. Plant Cell Physiol 29:295–303

    CAS  Google Scholar 

  • Ito J, Fukuda H (2002) ZEN1 is a key enzyme in the degradation of nuclear DNA during programmed cell death of tracheary elements. Plant Cell 14:3201–3211

    PubMed  CAS  Google Scholar 

  • Jarvis M (2003) Chemistry: cellulose stacks up. Nature 426:611–612

    PubMed  CAS  Google Scholar 

  • Jenkins PA, Shepherd KR (1974) Seasonal changes in levels of indoleacetic acid and abscisic acid in stem tissues of Pinus radiata. N Z J For Sci 4:511–519

    CAS  Google Scholar 

  • Jordan L, He R, Hall DB, Clark A, Daniels RF (2006) Variation in loblolly pine cross-sectional microfibril angle with tree height and physiographic region. Wood Fiber Sci 38:390–398

    CAS  Google Scholar 

  • Keegstra K, Raikhel N (2001) Plant glycosyltransferases. Curr Opin Plant Biol 4:219–224

    PubMed  CAS  Google Scholar 

  • Kenada M, Rensing KH, Wong JCT, Banno B, Mansfield SD, Samuels AL (2008) Tracking monolignols during wood development in lodgepole pine. Plant Phys 147:1750–1760

    Google Scholar 

  • Kerr AJ, Goring DAI (1975) The ultrastructural arrangement of the wood cell wall. Cellulose Chem Technol 9:563–573

    Google Scholar 

  • Ko JH, Prassinos C, Keathley D, Han KH (2011) Novel aspects of transcriptional regulation in the winter survival and maintenance mechanism of poplar. Tree Phys 31:208–225

    CAS  Google Scholar 

  • Kroll RE, Ritter DC, Gertjejansen RO, Au KC (1992) Anatomical and physical properties of balsam poplar (Populus balsamifera L.) in Minnesota. Wood Fiber Sci 24:13–24

    Google Scholar 

  • Kuriyama H (1999) Loss of tonoplast integrity programmed in tracheary element differentiation. Plant Physiol 121:763–774

    PubMed  CAS  Google Scholar 

  • Lachaud S (1989) Participation of auxin and abscisic acid in the regulation of seasonal variations in cambial activity and xylogenesis. Trees 3:125–137

    Google Scholar 

  • Lang GA (1987) Dormancy: a new universal terminology. Hort Sci 22:817–820

    Google Scholar 

  • Langer K, Ache P, Geiger D, Stinzing A, Arend M, Wind C, Regan S, Fromm J, Hedrich R (2002) Poplar potassium transporters capable of controlling K+ homeostasis and K+-dependent xylogenesis. Plant J 32:997–1009

    PubMed  CAS  Google Scholar 

  • Larisch C, Dittrich M, Wildhagen H, Lautner S, Fromm J, Polle A, Hedrich R, Rennenberg H, Müller T, Ache P (2012) Poplar wood rays are involved in seasonal remodeling of tree physiology. Plant Physiol 160(3):1515–1529

    PubMed  CAS  Google Scholar 

  • Larson PR (1994) The cambium: development and structure. Springer, Berlin

    Google Scholar 

  • Lautner S, Zollfrank C, Fromm J (2012) Microfibril angle distribution of poplar tension wood. IAWA J 33(4):431–439

    Google Scholar 

  • Lavigne MB, Little CHA, Riding RT (2004) Changes in stem respiration rate during cambial reactivation can be used to refine estimates of growth and maintenance respiration. New Phytol 162:81–93

    Google Scholar 

  • Lee C, Teng Q, Zhong R, Ye ZH (2011) Molecular dissection of xylan biosynthesis during wood formation in poplar. Mol Plant 4:730–747

    PubMed  CAS  Google Scholar 

  • Li X, Wu HX, Southerton SG (2011) Transcriptome profiling of Pinus radiata juvenile wood with contrasting stiffness identifies putative candidate genes involved in microfibril orientation and cell wall mechanics. BMC Genomics 12:480–496

    PubMed  CAS  Google Scholar 

  • Little CHA, Bonga JM (1974) Rest in the cambium of Abies balsamea. Can J Bot 52:1723–1730

    Google Scholar 

  • Little CHA, Savidge RA (1987) The role of plant growth regulators in forest tree cambial growth. Plant Growth Regul 6:137–169

    CAS  Google Scholar 

  • Love J, Björklund S, Vahala J, Hertzberg M, Kangasjärvi J, Sundberg B (2009) Ethylene is an endogenous stimulator of cell division in the cambial meristem of Populus. Proc Natl Acad Sci USA 106:5984–5989

    PubMed  CAS  Google Scholar 

  • Magel EA, Monties B, Drouet A, Jay-Allemand C, Ziegler H (1995) Heartwood formation: biosynthesis of heartwood extractives and “secondary” lignifications. In: Sandermann H Jr, Bonnet-Masimbert M (eds) Eurosilva – contribution to forest tree physiology. INRA, Versailles, pp 35–56

    Google Scholar 

  • Mansfield SD, Iliadis L, Avramidis S (2007) Neural network prediction of bending strength and stiffness in western hemlock (Tsuga heterophylla Raf.). Holzforschung 61:707–716

    CAS  Google Scholar 

  • Matsumoto T, Sakai F, Hayashi T (1997) A xyloglucan-specific endo-1,4-ß-glucanase isolated from auxin-treated pea stems. Plant Phys 114:661–667

    CAS  Google Scholar 

  • Matsumoto-Kitano M, Kusumoto T, Tarkowski P, Kinoshita-Tsujimura K, Václavíková K, Miyawaki K, Kakimoto T (2008) Cytokinins are central regulators of cambial activity. Proc Natl Acad Sci USA 105:20027–20031

    PubMed  CAS  Google Scholar 

  • Mauriat M, Moritz T (2009) Analyses of GA20ox-and GID1-over-expressing aspen suggest that gibberellins play two distinct roles in wood formation. Plant J 58:989–1003

    PubMed  CAS  Google Scholar 

  • McQueen-Mason S (1997) Plant cell walls and the control of growth. Biochem Soc Trans 25:204–214

    PubMed  CAS  Google Scholar 

  • McQueen-Mason SJ, Cosgrove DJ (1995) Expansin mode of action on cell walls (analysis of wall hydrolysis, stress relaxation, and binding). Plant Phys 107(1):87–100

    CAS  Google Scholar 

  • Mellerowicz EJ, Sundberg B (2008) Wood cell walls: biosynthesis, developmental dynamics and their implications for wood properties. Curr Opin Plant Biol 11:293–300

    PubMed  CAS  Google Scholar 

  • Mellerowicz EJ, Baucher M, Sundberg B, Boerjan W (2001) Unravelling cell wall formation in the woody dicot stem. Plant Mol Biol 47:239–274

    PubMed  CAS  Google Scholar 

  • Moreau C, Aksenov N, Lorenzo M, Segerman B, Funk C, Nilsson P, Jansson S, Tuominen H (2005) A genomic approach to investigate developmental cell death in woody tissues of Populus trees. Genome Biol 6:R34

    PubMed  Google Scholar 

  • Moyle R, Schrader J, Stenberg A, Olsson O, Saxena S, Sandberg G, Bhalerao RP (2002) Environmental and auxin regulation of wood formation involves members of the Aux/IAA gene family in hybrid aspen. Plant J 31(6):675–685

    PubMed  CAS  Google Scholar 

  • Muñiz L, Minguet EG, Singh SK, Pesquet E, Vera-Sirera F, Moreau-Courtois CL, Carbonell J, Blázquez MA, Tuominen H (2008) ACAULIS5 controls Arabidopsis xylem specification through the prevention of premature cell death. Development 135:2573–2582

    PubMed  Google Scholar 

  • Murakami Y, Funada R, Sano Y, Ohtani J (1999) The differentiation of contact cells and isolation cells in the xylem ray parenchyma of Populus maximowiczii. Ann Bot 84:429–435

    Google Scholar 

  • Mutwil M, Debold S, Persson S (2008) Cellulose synthesis: a complex. Curr Opin Plant Biol 11:252–257

    PubMed  CAS  Google Scholar 

  • Nakaba S, Sano Y, Kubo T, Funada R (2006) The positional distribution of cell death of ray parenchyma in a conifer, Abies sachalinensis. Plant Cell Rep 25:1143–1148

    PubMed  CAS  Google Scholar 

  • Nicholson RL, Hammerschmidt R (1992) Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol 30:369–389

    CAS  Google Scholar 

  • Nick P (2008) Control of cell axis. In: Nick P (ed) Plant microtubules – development and flexibility. Springer, Berlin, pp 3–46

    Google Scholar 

  • Nieminen K, Immanen J, Laxell M, Kauppinen L, Tarkowski P, Dolezal K, Tähtiharju S, Elo A, Decourteix M, Ljung K et al (2008) Cytokinin signaling regulates cambial development in poplar. Proc Natl Acad Sci USA 105:20032–20037

    PubMed  CAS  Google Scholar 

  • Nieminen K, Robischon M, Immanen J, Helariutta Y (2012) Towards optimizing wood development in bioenergy trees. New Phytol 194:46–53

    PubMed  CAS  Google Scholar 

  • Nilsson J, Karlberg A, Antti H, Lopes-Vernaza M, Mellerowicz E, Perrot-Rechenmann C, Sandberg G, Bhalerao RP (2008) Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. Plant Cell 20:843–855

    PubMed  CAS  Google Scholar 

  • Nishikubo N, Awano T, Banasiak A, Bourquin V, Ibatullin F, Funada R, Brumer H, Teeri TT, Hayashi T, Sundberg B, Mellerowicz EJ (2007) Xyloglucan endotransglycosylase (XET) functions in gelatinous layers of tension wood fibers in poplar – a glimpse into the mechanism of the balancing act of trees. Plant Cell Physiol 48:843–855

    PubMed  CAS  Google Scholar 

  • Oakley RV, Wang YS, Ramakrishna W, Harding SA, Tsai CJ (2007) Differential expansion and expression of α- and β-tubulin gene families in Populus. Plant Physiol 145:961–973

    PubMed  CAS  Google Scholar 

  • Obara K, Kuriyama H, Fukuda H (2001) Direct evidence of active and rapid nuclear degradation triggered by vacuole rupture during programmed cell death in Zinnia. Plant Physiol 125:615–626

    PubMed  CAS  Google Scholar 

  • Oda H, Fukuda H (2012) Secondary cell wall patterning during xylem differentiation. Curr Opin Plant Biol 15:38–44

    PubMed  CAS  Google Scholar 

  • Ohashi-Ito K, Oda Y, Fukuda H (2010) Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation. Plant Cell 22:3461–3473

    PubMed  CAS  Google Scholar 

  • Ohmiya Y, Samejima M, Shiroishi M, Amano Y, Kanda T, Sakai F, Hayashi T (2000) Evidence that endo-1,4-ß-glucanases act on cellulose in suspension-cultured poplar cells. Plant J 24:147–158

    PubMed  CAS  Google Scholar 

  • Oribe Y, Funada R, Shibagaki M, Kubo T (2001) Cambial reactivation in the partially heated stem in an evergreen conifer Abies sachalinensis. Planta 212:684–691

    PubMed  CAS  Google Scholar 

  • Oribe Y, Funada R, Kubo T (2003) Relationships between cambial activity, cell differentiation and the localization of starch in storage tissues around the cambium in locally heated stems of Abies sachalinensis (Schmidt) Masters. Trees 17:185–192

    Google Scholar 

  • Paredez A, Wright A, Ehrhardt DW (2006a) Microtubule cortical array organization and plant cell morphogenesis. Curr Opin Plant Biol 9:571–578

    Google Scholar 

  • Paredez AR, Somerville CR, Ehrhardt DW (2006b) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495

    PubMed  CAS  Google Scholar 

  • Pelloux J, Rustérucci C, Mellerowicz EJ (2007) New insights into pectin methylesterase (PME) structure and function. Trends Plant Sci 12:267–277

    PubMed  CAS  Google Scholar 

  • Pesquet E, Tuominen H (2011) Ethylene stimulates tracheary element differentiation in Zinnia elegans cell cultures. New Phytol 190:138–149

    CAS  Google Scholar 

  • Pesquet E, Korolev AV, Calder G, Lloyd CW (2010) The microtubule-associated protein AtMAP70-5 regulates secondary wall patterning in Arabidopsis wood cells. Curr Biol 20:744–749

    PubMed  CAS  Google Scholar 

  • Prassinos C, Ko JH, Han KH (2005) Transcriptome profiling of vertical stem segments provides insights into the genetic regulation of secondary growth in hybrid aspen trees. Plant Cell Physiol 46:1213–1225

    PubMed  CAS  Google Scholar 

  • Ragni L, Nieminen K, Pacheco-Villalobos D, Sibout R, Schwechheimer C, Hardtke CS (2011) Mobile gibberellin directly stimulates Arabidopsis hypocotyl xylem expansion. Plant Cell 23:1322–1336

    PubMed  CAS  Google Scholar 

  • Ralph J, MacKay JJ, Hatfield RD, O’Malley DM, Whetten RW, Sederoff RR (1997) Abnormal lignin in a loblolly pine. Science 277:235–239

    PubMed  CAS  Google Scholar 

  • Ranik M, Myburg AA (2006) Six new cellulose synthase genes from Eucalyptus are associated with primary and secondary cell wall biosynthesis. Tree Physiol 26:545–556

    PubMed  CAS  Google Scholar 

  • Rathgeber CBK, Rossi S, Bontemps JD (2011) Cambial activity related to tree size in a mature silver-fir plantation. Ann Bot 108:429–438

    PubMed  Google Scholar 

  • Resman L, Howe G, Jonsen D, Englund M, Druart N, Schrader J, Antti H, Skinner J, Sjodin A, Chen T, Bhalerao RP (2010) Components acting downstream of short day perception regulate differential cessation of cambial activity and associated responses in early and late clones of hybrid poplar. Plant Phys 154:1294–1303

    CAS  Google Scholar 

  • Rinne PLH, Welling A, Vahala J, Ripel L, Ruonala R, Kangasjarvi J, van der Schoot C (2011) Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1,3-beta-glucanases to reopen signal conduits and release dormancy in Populus. Plant Cell 23:130–146

    PubMed  CAS  Google Scholar 

  • Robards AW, Kidway P (1969) A comparative study of the ultrastructure of resting and active cambium of Salix fragilis L. Planta 84:239–249

    Google Scholar 

  • Robischon M, Du J, Miura E, Groover A (2011) The Populus class III HD ZIP, popREVOLUTA, influences cambium initiation and patterning of woody stems. Plant Physiol 155:1214–1225

    PubMed  CAS  Google Scholar 

  • Rohde A, Boerjan W (2001) Insights into bud development and dormancy in poplar. In: Huttunen S, Heikkilä H, Bucher J, Sundberg B, Jarvis P, Matyssek R (eds) Trends in European tree physiology research. Kluwer, The Netherlands, pp 33–52

    Google Scholar 

  • Ruttink T, Arend M, Morreel K, Strome V, Rombauts S, Fromm J, Bhalerao R, Boerjan W, Rohde A (2007) A molecular timetable for apical bud formation and dormancy induction in poplar. Plant Cell 19:2370–2390

    PubMed  CAS  Google Scholar 

  • Sampedro J, Carey RE, Cosgrove DJ (2006) Genome histories clarify evolution of the expansin superfamily: new insights from the poplar genome and pine ESTs. J Plant Res 119:11–21

    PubMed  CAS  Google Scholar 

  • Schrader J, Baba K, May ST, Palme K, Bennett M, Bhalerao RP (2003) Polar auxin transport in the wood forming tissues of hybrid aspen is under simultaneous control of developmental and environmental signals. Proc Natl Acad Sci USA 100:10096–10101

    PubMed  CAS  Google Scholar 

  • Schrader J, Moyle R, Bhalerao R, Hertzberg M, Lundeberg J, Nilsson P, Bhalerao RP (2004a) Cambial meristem dormancy in trees involves extensive remodelling of the transcriptome. Plant J 40:173–187

    PubMed  CAS  Google Scholar 

  • Schrader J, Nilsson J, Mellerowicz E, Berglund A, Nilsson P, Hertzberg M, Sandberg G (2004b) A high-resolution transcript profile across the wood-forming meristem of poplar identifies potential regulators of cambial stem cell identity. Plant Cell 16:2278–2292

    PubMed  CAS  Google Scholar 

  • Sennerby-Forsse L (1986) Seasonal variation in the ultrastructure of the cambium in young stems of willow (Salix viminalis) in relation to phenology. Plant Physiol 67:529–537

    Google Scholar 

  • Sexton TR, Henry RJ, Harwood CE, Thomas DS, McManus LJ, Raymond C, Henson M, Shepherd M (2012) Pectin methylesterase genes influence solid wood properties of Eucalyptus pilularis. Plant Physiol 158:531–541

    PubMed  CAS  Google Scholar 

  • Siedlecka A, Wiklund S, Péronne MA, Micheli F, Lésniewska J, Sethson I, Edlund U, Richard L, Sundberg B, Mellerowicsz EJ (2008) Pectin methyl esterase inhibits intrusive and symplastic cell growth in developing wood cells of Populus. Plant Physiol 146:554–565

    PubMed  CAS  Google Scholar 

  • Söding H (1937) Wuchsstoff und Kambiumtätigkeit der Bäume. Jahrb Wiss Bot 84:639–670

    Google Scholar 

  • Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53–78

    PubMed  CAS  Google Scholar 

  • Sterky F, Regan S, Karlsson J, Hertzberg M, Rohde A, Holmberg A, Amini B, Bhalerao R, Larsson M, Villarroel R, Van Montagu M, Sandberg G, Olsson O, Teeri TT, Boerjan W, Gustafsson P, Uhlén M, Sundberg B, Lundeberg J (1998) Gene discovery in the wood-forming tissues of poplar: analysis of 5692 expressed sequence tags. Proc Natl Acad Sci USA 95:13330–13335

    PubMed  CAS  Google Scholar 

  • Sterky F, Bhalerao RR, Unneberg P, Segerman B, Nilsson P, Brunner AM, Campaa LC, Lindvall JJ, Tandre K, Strauss SH, Sundberg B, Gustafsson P, Uhlen M, Bhalerao RP, Nilsson O, Sandberg G, Karlsson J, Lundeberg J, Jansson S (2004) A Populus EST resource for plant functional genomics. Proc Natl Acad Sci USA 101:13951–13956

    PubMed  Google Scholar 

  • Steward CM (1966) Excretion and heartwood formation in living trees. Science 153:1068–1074

    Google Scholar 

  • Sundberg B, Uggla C (1997) Origin and dynamics of indoleacetic acid under polar transport in Pinus sylvestris. Physiol Plant 104:22–29

    Google Scholar 

  • Sundberg B, Tuominen H, Little C (1994) Effects of the indole-3-acetic acid (IAA) transport inhibitors N-1-naphthylphthalamic acid and morphactin on endogenous IAA dynamics in relation to compression wood formation in 1-year-old Pinus sylvestris (L) shoots. Plant Physiol 106:469–476

    PubMed  CAS  Google Scholar 

  • Sundberg B, Uggla C, Tuominen H (2000) Cambial growth and auxin gradients. In: Savidge RA, Barnett JR, Napier R (eds) Cell and molecular biology of wood formation. BIOS Scientific Publishers, Oxford, pp 169–188

    Google Scholar 

  • Suzuki S, Li LG, Sun Y, Chiang VL (2006) The cellulose synthase gene superfamily and biochemical functions of xylem-specific cellulose synthase-like genes in Populus trichocarpa. Plant Physiol 142:1233–1245

    PubMed  CAS  Google Scholar 

  • Tanino K (2004) Hormones and endodormancy induction in woody plants. J Crop Improv 10:157–199

    CAS  Google Scholar 

  • Terashima N, Fukushima K, He LF, Takabe K (1993) Comprehensive model of the lignified plant cell wall. In: Jung HG (ed) Forage cell wall structure and digestibility. ASA-CSSA-SSSA, Madison, WI, pp 247–270

    Google Scholar 

  • Tuominen H, Sitbon F, Jacobsson C, Sandberg G, Olsson O, Sundberg B (1995) Altered growth and wood characteristics in transgenic hybrid aspen expressing Agrobacterium tumefaciens T-DNA indoleacetic-acid-biosynthetic genes. Plant Physiol 109:1179–1189

    PubMed  CAS  Google Scholar 

  • Tuskan GA et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    PubMed  CAS  Google Scholar 

  • Tyerman SD, Niemietz CM et al (2002) Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ 25(2):173–194

    PubMed  CAS  Google Scholar 

  • Uggla C, Mellerowicz EJ, Sundberg B (1998) Indole-3-acetic acid controls cambial growth in Scots pine by positional signaling. Plant Physiol 117:113–121

    PubMed  CAS  Google Scholar 

  • Uggla C, Magel E, Moritz T, Sundberg B (2001) Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in Scots pine. Plant Phys 125(4):2029–2039

    CAS  Google Scholar 

  • Vetter RE, Botosso PC (1989) Remarks on age and growth rate determination of Amazonian trees. IAWA Bull ns 10:133–145

    Google Scholar 

  • Voelker SL, Lachenbruch B, Meinzer FC, Jourdes M, Ki C, Patten AM, Davin LB, Lewis NG, Tuskan GA, Gunter L, Decker SR, Selig MJ, Sykes R, Himmel ME, Kitin P, Shevchenko O, Strauss SH (2010) Antisense down-regulation of 4CL expression alters lignification, tree growth and saccharification potential of field-grown poplar. Plant Physiol 154:874–886

    PubMed  CAS  Google Scholar 

  • Wind C, Arend M, Fromm J (2004) Potassium-dependent cambial growth in poplar. Plant Biol 6:30–37

    PubMed  CAS  Google Scholar 

  • Wodzicki TJ, Wodzicki AB (1980) Seasonal abscisic acid accumulation in stem and cambial region of Pinus sylvestris and its contribution to the hypothesis of a late-wood control system in conifers. Physiol Plant 48:443–447

    CAS  Google Scholar 

  • Worbes M (1985) Structural and other adaptations to long-term flooding by trees in Central Amazonia. Amazoniana 9:459–484

    Google Scholar 

  • Worbes M (1995) How to measure growth dynamics in tropical trees – a review. IAWA J 16:337–351

    Google Scholar 

  • Wu L, Joshi CP, Chiang VL (2000) A xylem-specific cellulose synthase gene from aspen (Populus tremuloides) is responsive to mechanical stress. Plant J 22:495–502

    PubMed  CAS  Google Scholar 

  • Yamaguchi M, Kubo M, Fukuda H, Demura T (2008) Vascular-related NAC-DOMAIN7 is involved in the differentiation of all types of xylem vessels in Arabidopsis roots and shoots. Plant J 55:652–664

    PubMed  CAS  Google Scholar 

  • Yamaguchi M, Ohtani M, Mitsuda N, Kubo M, Ohme-Takagi M, Fukuda H, Demura T (2010) VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis. Plant Cell 22:1249–1263

    PubMed  CAS  Google Scholar 

  • Yordanov YS, Regan S, Busov V (2010) Members of the LATERAL ORGAN BOUNDARIES DOMAIN transcription factor family are involved in the regulation of secondary growth in Populus. Plant Cell 22:3662–3677

    PubMed  CAS  Google Scholar 

  • York SW, O’Neill MA (2008) Biochemical control of xylan biosynthesis – which end is up? Curr Opin Plant Biol 11:258–265

    PubMed  CAS  Google Scholar 

  • Zagórska-Marek B (1995) Morphogenetic waves in cambium and figured wood formation. In: Iqbal M (Hrgs) Encyclopedia of plant anatomy, Band 9, Teil 4, the cambial derivatives. Gebrüder Borntraeger, Berlin, pp 69–69

    Google Scholar 

  • Zhang J, Elo A, Helariutta Y (2011) Arabidopsis as a model for wood formation. Curr Opin Biotechnol 22:293–299

    PubMed  CAS  Google Scholar 

  • Zhong R, Ye Z-H (2007) Regulation of cell wall biosynthesis. Curr Opin Plant Biol 10:564–572

    PubMed  CAS  Google Scholar 

  • Zhong R, Richardson EA, Ye ZH (2007) Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta 225:1603–1611

    PubMed  CAS  Google Scholar 

  • Zhong R, Lee C, Ye Z-H (2010) Global analysis of direct targets of secondary wall NAC master switches in Arabidopsis. Mol Plant 3:1087–1103

    PubMed  CAS  Google Scholar 

  • Zhong R, McCarthy RL, Lee C, Ye ZH (2011) Dissection of the transcriptional program regulating secondary walls biosynthesis during wood formation in Poplar. Plant Physiol 157:1452–1468

    PubMed  CAS  Google Scholar 

  • Zhu Z, An F, Feng Y, Li P, Xue L, Mu A, Jiang Z, Kim JM, To TK, Li W et al (2011) Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc Natl Acad Sci USA 108:12539–12544

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Fromm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fromm, J. (2013). Xylem Development in Trees: From Cambial Divisions to Mature Wood Cells. In: Fromm, J. (eds) Cellular Aspects of Wood Formation. Plant Cell Monographs, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36491-4_1

Download citation

Publish with us

Policies and ethics