Skip to main content

Advanced Control of Atomic Force Microscope for Faster Image Scanning

  • Chapter
  • First Online:
Applied Methods and Techniques for Mechatronic Systems

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 452))

Abstract

In atomic force microscopy (AFM), the dynamics and nonlinearities of its nanopositioning stage are major sources of image distortion, especially when imaging at high scanning speed. This chapter discusses the design and experimental implementation of an observer-based model predictive control (OMPC) scheme which aims to compensate for the effects of creep, hysteresis, cross-coupling, and vibration in piezoactuators in order to improve the nanopositioning of an AFM. The controller design is based on an identified model of the piezoelectric tube scanner (PTS) for which the control scheme achieves significant compensation of its creep, hysteresis, cross-coupling, and vibration effects and ensures better tracking of the reference signal. A Kalman filter is used to obtain full-state information about the plant. The experimental results illustrate the use of this proposed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yong YK, Ahmed B, Moheimani SOR (2010) Atomic force microscopy with a 12-electrode piezoelectric tube scanner. Rev Sci Instrum 81(3):033 701–10

    Google Scholar 

  2. Meyer E, Hug HJ, Bennewitz R (2004) Scanning probe microscopy. Springer, Berlin

    Google Scholar 

  3. Sarid D (1994) Scanning force microscopy: with applications to electric, magnetic and atomic forces. Oxford University Press, Oxford

    Google Scholar 

  4. Fleming AJ, Aphale SS, Moheimani SOR (2010) A new method for robust damping and tracking control of scanning probe microscope positioning stages. IEEE Trans Nanotechnol 9(4):438–448

    Article  Google Scholar 

  5. Yong YK, Liu K, Moheimani SOR (2010) Reducing cross-coupling in a compliant XY nanopositioner for fast and accurate raster scanning. IEEE Trans Control Syst Technol 18(5):1172–1179

    Article  Google Scholar 

  6. Taylor ME (1993) Dynamics of piezoelectric tube scanners for scanning probe microscopy. Rev Sci Instrum 64(1):154–158

    Article  Google Scholar 

  7. Adriaens H, De Koning W, Banning R (2000) Modeling piezoelectric actuators. IEEE/ASME Trans Mechatron 5(4):331–341

    Article  Google Scholar 

  8. Rana MS, Pota HR, Petersen IR (2012) Improved control of atomic force microscope for high-speed image scanning. In: Australian control conference (AUCC). Sydney, pp 470–475

    Google Scholar 

  9. Bazaei A, Yong YK, Moheimani SOR, Sebastian A (2012) Tracking of triangular references using signal transformation for control of a novel AFM scanner stage. IEEE Trans Control Syst Technol 20(2):453–464

    Article  Google Scholar 

  10. Jung H, Shim JY, Gweon D (2001) Tracking control of piezoelectric actuators. Nanotechnology 12(1):14–20

    Article  Google Scholar 

  11. Croft D, Shedd G, Devasia S (2000) Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application. Proc Am Control Conf 3:2123–2128

    Google Scholar 

  12. Jung H, Shim JY, Gweon D (2000) New open-loop actuating method of piezoelectric actuators for removing hysteresis and creep. Rev Sci Instrum 71(9):3436–3440

    Article  Google Scholar 

  13. Croft D, Shedd G, Devasia S (2001) Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application. J Dyn Syst Meas Control Trans ASME 123(1):35–43

    Article  Google Scholar 

  14. Leang K, Devasia S (2007) Feedback-linearized inverse feedforward for creep, hysteresis, and vibration compensation in afm piezoactuators. IEEE Trans Control Syst Technol 15(5):927–935

    Article  Google Scholar 

  15. Yi KA, Veillette RJ (2005) A charge controller for linear operation of a piezoelectric stack actuator. IEEE Trans Control Syst Technol 13(4):517–526

    Article  Google Scholar 

  16. Chuang N, Petersen IR, Pota HR (2013) Robust \(H^{\infty }\) control in fast atomic force microscopy. Asian J Control 15(4):1–15

    MathSciNet  Google Scholar 

  17. Cruz-Hernandez JM, Hayward V (2001) Phase control approach to hysteresis reduction. IEEE Trans Control Syst Technol 9(1):17–26

    Article  Google Scholar 

  18. Mahmood IA, Moheimani SOR (2009) Making a commercial atomic force microscope more accurate and faster using positive position feedback control. Rev Sci Instrum 80(6):063 705-063–705-8

    Google Scholar 

  19. Moheimani SOR, Vautier BJG (2005) Resonant control of structural vibration using charge-driven piezoelectric actuators. IEEE Trans Control Syst Technol 13(6):1021–1035

    Article  Google Scholar 

  20. Aphale SS, Bhikkaji B, Moheimani SOR (2008) Minimizing scanning errors in piezoelectric stack-actuated nanopositioning platforms. IEEE Trans Nanotechnol 7(1):79–90

    Article  Google Scholar 

  21. Pota HR, Moheimani SOR, Smith M (2002) Resonant controller for smart structures. Smart Mater Struct 11:1–8

    Article  Google Scholar 

  22. Bhikkaji B, Ratnam M, Fleming AJ, Moheimani SOR (2007) High-performance control of piezoelectric tube scanners. IEEE Trans Control Syst Technol 15(5):853–866

    Article  Google Scholar 

  23. Moheimani SOR, Vautier BJG, Bhikkaji B (2006) Experimental implementation of extended multivariable PPF control on an active structure. IEEE Trans Control Syst Technol 14(3):443–455

    Google Scholar 

  24. Kenton BJ, Fleming AJ, Leang KK (2011) Compact ultra-fast vertical nanopositioner for improving scanning probe microscope scan speed. Rev Sci Instrum 82(12):123 703-123–703-8

    Google Scholar 

  25. Schitter G, Astrom K, DeMartini B, Thurner P, Turner K, Hansma P (2007) Design and modeling of a high-speed AFM-scanner. IEEE Trans Control Syst Technol 15(5):906–915

    Article  Google Scholar 

  26. Kenton B, Leang K (2012) Design and control of a three-axis serial-kinematic high-bandwidth nanopositioner. IEEE/ASME Trans Mechatron 17(2):356–369

    Article  Google Scholar 

  27. Fairbairn MW, Moheimani SOR, Fleming AJ (2011) Improving the scan rate and image quality in tapping mode atomic force microscopy with piezoelectric shunt control. In: Australian control conference (AUCC). pp 26–31

    Google Scholar 

  28. Grosswindhager S, Kozek M, Voigt A, Haffner L (2013) Fuzzy predictive control of district heating network. Int J Model Ident Control 19(2):161–170

    Article  Google Scholar 

  29. Su B, Qi G, Van Wyk BJ (2012) Output feedback predictive control for uncertain non-linear switched systems. Int J Model Identif Control 17(3):195–205

    Article  Google Scholar 

  30. Li D, Xi Y (2011) The synthesis of robust model predictive control with QP formulation. Int J Model Identif Control 13(1/2):1–8

    Article  MathSciNet  Google Scholar 

  31. Rana MS, Pota HR, Petersen IR (2012) Model predictive control of atomic force microscope for fast image scanning. In: 51st conference on decision and control (CDC). Hawaii, USA, pp 2477–2482

    Google Scholar 

  32. Devasia S, Eleftheriou E, Moheimani SOR (2007) A survey of control issues in nanopositioning. IEEE Trans Control Syst Technol 15(5):802–823

    Article  Google Scholar 

  33. Privara S, Cigler J, Vana Z, Ferkl L (2012) Incorporation of system steady state properties into subspace identification algorithm. Int J Model Identif Control 16(2):159–167

    Article  Google Scholar 

  34. Ljung L (2002) Prediction error estimation methods. Circ Syst Signal Process 21:11–21

    Article  MathSciNet  Google Scholar 

  35. Kabaila P (1983) On output-error methods for system identification. IEEE Trans Autom Control 28(1):12–23

    Article  MATH  MathSciNet  Google Scholar 

  36. Wang L (2009) Model predictive control system design and implementation using MATLAB. Springer, London

    Google Scholar 

  37. Ray P, Panda G (2012) Harmonics estimation using KF-Adaline algorithm and elimination with hybrid active power filter in distorted power system signals. Int J Model Identif Control 16(2):149–158

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Shane Brandon, SEIT, UNSW, Canberra, Australia for his technical support during the experimental tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Rana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rana, M.S., Pota, H.R., Petersen, I.R. (2014). Advanced Control of Atomic Force Microscope for Faster Image Scanning. In: Liu, L., Zhu, Q., Cheng, L., Wang, Y., Zhao, D. (eds) Applied Methods and Techniques for Mechatronic Systems. Lecture Notes in Control and Information Sciences, vol 452. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36385-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36385-6_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36384-9

  • Online ISBN: 978-3-642-36385-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics