Skip to main content

From Formal Methods to Algorithmic Implementation of Human Inspired Control on Bipedal Robots

  • Conference paper
Algorithmic Foundations of Robotics X

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 86))

Abstract

This paper presents the process of translating formal theory and methods to efficient algorithms in the context of human-inspired control of bipedal robots, with the end result being experimentally realized robust and efficient robotic walking with AMBER. We begin by considering human walking data and find outputs (or virtual constraints) that, when calculated from the human data, are described by simple functions of time (termed canonical walking functions). Formally, we construct a torque controller, through model inversion, that drives the outputs of the robot to the outputs of the human as represented by the canonical walking function; while these functions fit the human data well, they do not apriori guarantee robotic walking (due to do the physical differences between humans and robots). An optimization problem is presented that determines the best fit of the canonical walking function to the human data, while guaranteeing walking for a specific bipedal robot; in addition, constraints can be added that guarantee physically realizable walking. We consider a physical bipedal robot AMBER and define a simple voltage based control law—utilizing only the human outputs and canonical walking function with parameters obtained from the optimization—for which we obtain walking in simulation. Since this controller does not require model inversion, it can be implemented efficiently in software. Moreover, applying this methodology to AMBER experimentally results in robust and efficient ”human-like” robotic walking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amber walking and undergoing robustness tests, http://youtu.be/SYXWoNU8QUE

  2. Robustness tests conducted on AMBER, http://youtu.be/RgQ8atV1NW0

  3. Ames, A.D.: First Steps Toward Automatically Generating Bipedal Robotic Walking from Human Data. In: Kozłowski, K. (ed.) Robot Motion and Control 2011. LNCIS, vol. 422, pp. 89–116. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Ames, A.D.: First steps toward underactuated human-inspired bipedal robotic walking. In: 2012 IEEE Conference on Robotics and Automation, St. Paul, Minnesota (2012)

    Google Scholar 

  5. Ames, A.D., Cousineau, E.A., Powell, M.J.: Dynamically stable robotic walking with NAO via human-inspired hybrid zero dynamics. In: Hybrid Systems: Computation and Control, Beijing, China (April 2012)

    Google Scholar 

  6. Burg, T., Dawson, D., Hu, J., de Queiroz, M.: An adaptive partial state-feedback controller for RLED robot manipulators. IEEE Transactions on Automatic Control 41(7), 1024–1030 (1996)

    Article  MATH  Google Scholar 

  7. Collins, S., Ruina, A., Tedrake, R., Wisse, M.: Efficient bipedal robots based on passive-dynamic walkers. Science 307, 1082–1085 (2005)

    Article  Google Scholar 

  8. Geyer, H., Herr, H.: A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Transactions on Neural Systems and Rehabilitation Engineering 18(3), 263–273 (2010)

    Article  Google Scholar 

  9. Grizzle, J.W., Hurst, J., Morris, B., Park, H., Sreenath, K.: MABEL, a new robotic bipedal walker and runner. In: American Control Conference, St. Louis, MO, pp. 2030–2036 (2009)

    Google Scholar 

  10. Holmes, P., Full, R.J., Koditschek, D., Guckenheimer, J.: The dynamics of legged locomotion: Models, analyses, and challenges. SIAM Rev. 48, 207–304 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Networks 21(4), 642–653 (2008)

    Article  Google Scholar 

  12. Liu, C., Cheah, C.C., Slotine, J.E.: Adaptive jacobian tracking control of rigid-link electrically driven robots based on visual task-space information. Automatica 42(9), 1491–1501 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Manchester, I.R., Mettin, U., Iida, F., Tedrake, R.: Stable dynamic walking over uneven terrain. The International Journal of Robotics Research 30(3), 265–279 (2011)

    Article  Google Scholar 

  14. McGeer, T.: Passive dynamic walking. Intl. J. of Robotics Research 9(2), 62–82 (1990)

    Article  Google Scholar 

  15. Morimoto, J., Cheng, G., Atkenson, C., Zeglin, G.: A simple reinforcement learning algorithm for biped walking. In: Proceedings of the 2004 IEEE International Conference on Robotics & Automation, New Orleans, LA (May 2004)

    Google Scholar 

  16. Nielsen, J.B.: How we walk: Central control of muscle activity during human walking. The Neuroscientist 9(3), 195–204 (2003)

    Article  Google Scholar 

  17. Park, H.-W., Sreenath, K., Hurst, J., Grizzle, J.W.: Identification of a bipedal robot with a compliant drivetrain: Parameter estimation for control design. IEEE Control Systems Magazine 31(2), 63–88 (2011)

    Article  MathSciNet  Google Scholar 

  18. Pasupuleti, M., Nadubettu Yadukumar, S., Ames, A.D.: Human-inspired underactuated bipedal robotic walking with amber on flat-ground, up-slope and uneven terrain. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Algarve, Portugal (2012)

    Google Scholar 

  19. Poulakakis, I., Grizzle, J.W.: The Spring Loaded Inverted Pendulum as the Hybrid Zero Dynamics of an Asymmetric Hopper. Transaction on Automatic Control 54(8), 1779–1793 (2009)

    Article  MathSciNet  Google Scholar 

  20. Raibert, M.H.: Legged robots. Communications of the ACM 29(6), 499–514 (1986)

    Article  MATH  Google Scholar 

  21. Spong, M.W., Bullo, F.: Controlled symmetries and passive walking. IEEE TAC 50(7), 1025–1031 (2005)

    MathSciNet  Google Scholar 

  22. Srinivasan, S., Raptis, I.A., Westervelt, E.R.: Low-dimensional sagittal plane model of normal human walking. ASME J. of Biomechanical Eng. 130(5) (2008)

    Google Scholar 

  23. Westervelt, E.R., Grizzle, J.W., Chevallereau, C., Choi, J.H., Morris, B.: Feedback Control of Dynamic Bipedal Robot Locomotion. CRC Press, Boca Raton (2007)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shishir Nadubettu Yadukumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yadukumar, S.N., Pasupuleti, M., Ames, A.D. (2013). From Formal Methods to Algorithmic Implementation of Human Inspired Control on Bipedal Robots. In: Frazzoli, E., Lozano-Perez, T., Roy, N., Rus, D. (eds) Algorithmic Foundations of Robotics X. Springer Tracts in Advanced Robotics, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36279-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36279-8_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36278-1

  • Online ISBN: 978-3-642-36279-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics