Skip to main content

MDS Stem Cell Biology

  • Chapter
  • First Online:
Myelodysplastic Syndromes

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

  • 1259 Accesses

Abstract

The clinical heterogeneity of patients with myelodysplastic syndromes suggests that there must also be a broad range of pathogenetic abnormalities that underlie this disorder. It is clear that the molecular abnormalities associated with MDS are vast, as are the functional abnormalities within the hematopoietic compartment. This implies that there may also be significant differences in the cell of origin and varying degrees of aberrant communication with the microenvironment in individual patients. It is only through recent advances in flow cytometry, DNA sequencing, and high throughput analysis of the genome, proteome, and RNA expression profiles that we can make these general but profound statements about the spectrum of abnormalities in MDS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Asimakopoulos FA, Holloway TL, Nacheva EP et al (1996) Detection of chromosome 20q deletions in bone marrow metaphases but not peripheral blood granulocytes in patients with myeloproliferative disorders or myelodysplastic syndromes. Blood 87:1561–1570

    PubMed  CAS  Google Scholar 

  • Bell JJ, Bhandoola A (2008) The earliest thymic progenitors for T cells possess myeloid lineage potential. Nature 452:764–767

    Article  PubMed  CAS  Google Scholar 

  • Benz C, Copley MR, Kent DG et al (2012) Hematopoietic stem cell subtypes expand differentially during development and display distinct lymphopoietic programs. Cell Stem Cell 10:273–283

    Article  PubMed  CAS  Google Scholar 

  • Bhatia R, Mcglave PB, Dewald GW et al (1995) Abnormal function of the bone marrow microenvironment in chronic myelogenous leukemia: role of malignant stromal macrophages. Blood 85:3636–3645

    PubMed  CAS  Google Scholar 

  • Buonamici S, Li D, Chi Y et al (2004) EVI1 induces myelodysplastic syndrome in mice. J Clin Invest 114:713–719

    PubMed  CAS  Google Scholar 

  • Calvi LM, Adams GB, Weibrecht KW et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846

    Article  PubMed  CAS  Google Scholar 

  • Chabannon C, Torok-Storb B (1992) Stem cell-stromal cell interactions. Curr Top Microbiol Immunol 177:123–136

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Zeng W, Miyazato A et al (2004) Distinctive gene expression profiles of CD34 cells from patients with myelodysplastic syndrome characterized by specific chromosomal abnormalities. Blood 104:4210–4218

    Article  PubMed  CAS  Google Scholar 

  • Choesmel V, Bacqueville D, Rouquette J et al (2007) Impaired ribosome biogenesis in Diamond-Blackfan anemia. Blood 109:1275–1283

    Article  PubMed  CAS  Google Scholar 

  • Christiansen DH, Andersen MK, Pedersen-Bjergaard J (2001) Mutations with loss of heterozygosity of p53 are common in therapy-related myelodysplasia and acute myeloid leukemia after exposure to alkylating agents and significantly associated with deletion or loss of 5q, a complex karyotype, and a poor prognosis. J Clin Oncol 19:1405–1413

    PubMed  CAS  Google Scholar 

  • Copeland NG, Gilbert DJ, Cho BC et al (1990) Mast cell growth factor maps near the steel locus on mouse chromosome 10 and is deleted in a number of steel alleles. Cell 63:175–183

    Article  PubMed  CAS  Google Scholar 

  • Deeg HJ, Beckham C, Loken MR et al (2000) Negative regulators of hemopoiesis and stroma function in patients with myelodysplastic syndrome. Leuk Lymphoma 37:405–414

    PubMed  CAS  Google Scholar 

  • Dexter TM, Allen TD, Lajtha LG (1977) Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol 91:335–344

    Article  PubMed  CAS  Google Scholar 

  • Duhrsen U, Hossfeld DK (1996) Stromal abnormalities in neoplastic bone marrow diseases. Ann Hematol 73:53–70

    Article  PubMed  CAS  Google Scholar 

  • Figueroa ME, Skrabanek L, Li Y et al (2009) MDS and secondary AML display unique patterns and abundance of aberrant DNA methylation. Blood 114:3448–3458

    Article  PubMed  CAS  Google Scholar 

  • Fontana L, Pelosi E, Greco P et al (2007) MicroRNAs 17-5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nat Cell Biol 9:775–787

    Article  PubMed  CAS  Google Scholar 

  • Frankel AE, Mccubrey JA, Miller MS et al (2000) Diphtheria toxin fused to human interleukin-3 is toxic to blasts from patients with myeloid leukemias. Leukemia 14:576–585

    Article  PubMed  CAS  Google Scholar 

  • Frankel A, Liu JS, Rizzieri D et al (2008) Phase I clinical study of diphtheria toxin-interleukin 3 fusion protein in patients with acute myeloid leukemia and myelodysplasia. Leuk Lymphoma 49:543–553

    Article  PubMed  CAS  Google Scholar 

  • Gartner S, Kaplan HS (1980) Long-term culture of human bone marrow cells. Proc Natl Acad Sci U S A 77:4756–4759

    Article  PubMed  CAS  Google Scholar 

  • Gazda HT, Kho AT, Sanoudou D et al (2006) Defective ribosomal protein gene expression alters transcription, translation, apoptosis, and oncogenic pathways in Diamond-Blackfan anemia. Stem Cells 24:2034–2044

    Article  PubMed  CAS  Google Scholar 

  • Gondek LP, Tiu R, O’keefe CL et al (2008) Chromosomal lesions and uniparental disomy detected by SNP arrays in MDS, MDS/MPD, and MDS-derived AML. Blood 111:1534–1542

    Article  PubMed  CAS  Google Scholar 

  • Goodell MA, Brose K, Paradis G et al (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806

    Article  PubMed  CAS  Google Scholar 

  • Greenberger JS (1991) The hematopoietic microenvironment. Crit Rev Oncol Hematol 11:65–84

    Article  PubMed  CAS  Google Scholar 

  • Heavey B, Charalambous C, Cobaleda C et al (2003) Myeloid lineage switch of Pax5 mutant but not wild-type B cell progenitors by C/EBPalpha and GATA factors. EMBO J 22:3887–3897

    Article  PubMed  CAS  Google Scholar 

  • Heissig B, Hattori K, Dias S et al (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109:625–637

    Article  PubMed  CAS  Google Scholar 

  • Huang E, Nocka K, Beier DR et al (1990) The hematopoietic growth factor KL is encoded by the Sl locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell 63:225–233

    Article  PubMed  CAS  Google Scholar 

  • Iwata M, Pillai M, Ramakrishnan A et al (2007) Reduced expression of inducible gelatinase B/matrix metalloproteinase-9 in monocytes from patients with myelodysplastic syndrome: correlation of inducible levels with the percentage of cytogenetically marked cells and with marrow cellularity. Blood 109:85–92

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Dunbar A, Gondek LP et al (2009) Aberrant DNA methylation is a dominant mechanism in MDS progression to AML. Blood 113:1315–1325

    Article  PubMed  CAS  Google Scholar 

  • Jin L, Hope KJ, Zhai Q et al (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12:1167–1174

    Article  PubMed  Google Scholar 

  • Jokubaitis VJ, Sinka L, Driessen R et al (2008) Angioten­sin-converting enzyme (CD143) marks hematopoietic stem cells in human embryonic, fetal, and adult hematopoietic tissues. Blood 111: 4055–4063

    Article  PubMed  CAS  Google Scholar 

  • Jordan CT, Upchurch D, Szilvassy SJ et al (2000) The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 14:1777–1784

    Article  PubMed  CAS  Google Scholar 

  • Kollet O, Peled A, Byk T et al (2000) beta2 microglobulin-deficient (B2m(null)) NOD/SCID mice are excellent recipients for studying human stem cell function. Blood 95:3102–3105

    PubMed  CAS  Google Scholar 

  • Lam DH, Aplan PD (2001) NUP98 gene fusions in hematologic malignancies. Leukemia 15:1689–1695

    Article  PubMed  CAS  Google Scholar 

  • Lane SW, Sykes SM, Al-Shahrour F et al (2010) The Apc(min) mouse has altered hematopoietic stem cell function and provides a model for MPD/MDS. Blood 115:3489–3497

    Article  PubMed  CAS  Google Scholar 

  • Lapidot T, Sirard C, Vormoor J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648

    Article  PubMed  CAS  Google Scholar 

  • Laver J, Jhanwar SC, O’reilly RJ et al (1987) Host origin of the human hematopoietic microenvironment following allogeneic bone marrow transplantation. Blood 70:1966–1968

    PubMed  CAS  Google Scholar 

  • Lawler M, Locasciulli A, Longoni D et al (2002) Leukaemic transformation of donor cells in a patient receiving a second allogeneic bone marrow transplant for severe aplastic anaemia. Bone Marrow Transplant 29:453–456

    Article  PubMed  CAS  Google Scholar 

  • Lawrence HJ, Broudy VC, Magenis RE et al (1987) Cytogenetic evidence for involvement of B lymphocytes in acquired idiopathic sideroblastic anemias. Blood 70:1003–1005

    PubMed  CAS  Google Scholar 

  • Lennon JE, Micklem HS (1986) Stromal cells in long-term murine bone marrow culture: FACS studies and origin of stromal cells in radiation chimeras. Exp Hematol 14:287–292

    PubMed  CAS  Google Scholar 

  • Li X, Marcondes AM, Gooley TA et al (2010) The helix-loop-helix transcription factor TWIST is dysregulated in myelodysplastic syndromes. Blood 116:2304–2314

    Article  PubMed  CAS  Google Scholar 

  • Lin YW, Slape C, Zhang Z et al (2005) NUP98-HOXD13 transgenic mice develop a highly penetrant, severe myelodysplastic syndrome that progresses to acute leukemia. Blood 106:287–295

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Ceuppens J, Kasran A et al (2007) Immature and mature monocyte-derived dendritic cells in myelodysplastic syndromes of subtypes refractory anemia or refractory anemia with ringed sideroblasts display an altered cytokine profile. Leuk Res 31:1373–1382

    Article  PubMed  CAS  Google Scholar 

  • Malcovati L, Papaemmanuil E, Bowen DT et al (2011) Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. Blood 118:6239–6246

    Article  PubMed  CAS  Google Scholar 

  • Marsh JC, Harhalakis N, Dowding C et al (1989) Recurrent graft failure following syngeneic bone marrow transplantation for aplastic anaemia. Bone Marrow Transplant 4:581–585

    PubMed  CAS  Google Scholar 

  • Mayani H, Guilbert LJ, Janowska-Wieczorek A (1992) Biology of the hemopoietic microenvironment. Eur J Haematol 49:225–233

    Article  PubMed  CAS  Google Scholar 

  • Mc Cann SR, Lawler M, Gardiner N et al (1994) Donor leukemia following allogeneic bone marrow transplantation. Leukemia 8(Suppl 1):S133–S135

    PubMed  Google Scholar 

  • Mcculloch EA, Siminovitch L, Till JE et al (1965) The cellular basis of the genetically determined hemopoietic defect in anemic mice of genotype Sl-Sld. Blood 26:399–410

    PubMed  CAS  Google Scholar 

  • Mcdermott SP, Eppert K, Lechman ER et al (2010) Comparison of human cord blood engraftment between immunocompromised mouse strains. Blood 116: 193–200

    Article  PubMed  CAS  Google Scholar 

  • Micheva I, Thanopoulou E, Michalopoulou S et al (2004) Defective tumor necrosis factor alpha-induced maturation of monocyte-derived dendritic cells in patients with myelodysplastic syndromes. Clin Immunol 113:310–317

    Article  PubMed  CAS  Google Scholar 

  • Mohamedali A, Gaken J, Twine NA et al (2007) Prevalence and prognostic significance of allelic imbalance by single-nucleotide polymorphism analysis in low-risk myelodysplastic syndromes. Blood 110:3365–3373

    Article  PubMed  CAS  Google Scholar 

  • Nafa K, Bessler M, Deeg HJ et al (1998) New somatic mutation in the PIG-A gene emerges at relapse of paroxysmal nocturnal hemoglobinuria. Blood 92:3422–3427

    PubMed  CAS  Google Scholar 

  • Nilsson L, Eden P, Olsson E et al (2007) The molecular signature of MDS stem cells supports a stem-cell origin of 5q myelodysplastic syndromes. Blood 110:3005–3014

    Article  PubMed  CAS  Google Scholar 

  • Nutt SL, Heavey B, Rolink AG et al (1999) Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401:556–562

    Article  PubMed  CAS  Google Scholar 

  • Papaemmanuil E, Cazzola M, Boultwood J et al (2011) Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Eng J Med 365:1384–1395

    Article  CAS  Google Scholar 

  • Pellagatti A, Cazzola M, Giagounidis AA et al (2006) Gene expression profiles of CD34+ cells in myelodysplastic syndromes: involvement of interferon-stimulated genes and correlation to FAB subtype and karyotype. Blood 108:337–345

    Article  PubMed  CAS  Google Scholar 

  • Pellagatti A, Hellstrom-Lindberg E, Giagounidis A et al (2008) Haploinsufficiency of RPS14 in 5q− syndrome is associated with deregulation of ribosomal- and translation-related genes. Br J Haematol 142:57–64

    Article  PubMed  CAS  Google Scholar 

  • Perkins S, Fleischman RA (1988) Hematopoietic microenvironment. Origin, lineage, and transplantability of the stromal cells in long-term bone marrow cultures from chimeric mice. J Clin Invest 81:1072–1080

    Article  PubMed  CAS  Google Scholar 

  • Podar K, Richardson PG, Hideshima T et al (2007) The malignant clone and the bone-marrow environment. Best Pract Res Clin Haematol 20:597–612

    Article  PubMed  CAS  Google Scholar 

  • Qiang YW, Chen Y, Stephens O et al (2008) Myeloma-derived Dickkopf-1 disrupts Wnt-regulated osteoprotegerin and RANKL production by osteoblasts: a potential mechanism underlying osteolytic bone lesions in multiple myeloma. Blood 112:196–207

    Article  PubMed  CAS  Google Scholar 

  • Raaijmakers MH, Mukherjee S, Guo S et al (2010) Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464:852–857

    Article  PubMed  CAS  Google Scholar 

  • Raj K, John A, Ho A et al (2007) CDKN2B methylation status and isolated chromosome 7 abnormalities predict responses to treatment with 5-azacytidine. Leukemia 21:1937–1944

    Article  PubMed  CAS  Google Scholar 

  • Raskind WH, Tirumali N, Jacobson R et al (1984) Evidence for a multistep pathogenesis of a myelodysplastic syndrome. Blood 63:1318–1323

    PubMed  CAS  Google Scholar 

  • Rhyasen GW, Starczynowski DT (2012) Deregulation of microRNAs in myelodysplastic syndrome. Leukemia 26:13–22

    Article  PubMed  CAS  Google Scholar 

  • Rupec RA, Jundt F, Rebholz B et al (2005) Stroma-mediated dysregulation of myelopoiesis in mice lacking I kappa B alpha. Immunity 22:479–491

    Article  PubMed  CAS  Google Scholar 

  • Russell ES (1979) Hereditary anemias of the mouse: a review for geneticists. Adv Genet 20:357–459

    Article  PubMed  CAS  Google Scholar 

  • Scadden DT (2007) The stem cell niche in health and leukemic disease. Best Pract Res Clin Haematol 20:19–27

    Article  PubMed  CAS  Google Scholar 

  • Senyuk V, Sinha KK, Li D et al (2007) Repression of RUNX1 activity by EVI1: a new role of EVI1 in leukemogenesis. Cancer Res 67:5658–5666

    Article  PubMed  CAS  Google Scholar 

  • Shen L, Kantarjian H, Guo Y et al (2010) DNA methylation predicts survival and response to therapy in patients with myelodysplastic syndromes. J Clin Oncol 28:605–613

    Article  PubMed  CAS  Google Scholar 

  • Simmons PJ, Przepiorka D, Thomas ED et al (1987) Host origin of marrow stromal cells following allogeneic bone marrow transplantation. Nature 328:429–432

    Article  PubMed  CAS  Google Scholar 

  • Srivannaboon K, Conley ME, Coustan-Smith E et al (2001) Hypogammaglobulinemia and reduced numbers of B-cells in children with myelodysplastic syndrome. J Pediatr Hematol Oncol 23:122–125

    Article  PubMed  CAS  Google Scholar 

  • Starczynowski DT, Morin R, Mcpherson A et al (2011) Genome-wide identification of human microRNAs located in leukemia-associated genomic alterations. Blood 117:595–607

    Article  PubMed  CAS  Google Scholar 

  • Sternberg A, Killick S, Littlewood T et al (2005) Evidence for reduced B-cell progenitors in early (low-risk) myelodysplastic syndrome. Blood 106:2982–2991

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto K, Hirano N, Toyoshima H et al (1993) Mutations of the p53 gene in myelodysplastic syndrome (MDS) and MDS-derived leukemia. Blood 81:3022–3026

    PubMed  CAS  Google Scholar 

  • Taichman RS (2005) Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood 105:2631–2639

    Article  PubMed  CAS  Google Scholar 

  • Tang Y, Zhao W, Chen Y et al (2008) Acetylation is indispensable for p53 activation. Cell 133:612–626

    Article  PubMed  CAS  Google Scholar 

  • Tehranchi R, Woll PS, Anderson K et al (2010) Persistent malignant stem cells in del(5q) myelodysplasia in remission. N Eng J Med 363:1025–1037

    Article  CAS  Google Scholar 

  • Testa U, Riccioni R, Militi S et al (2002) Elevated expression of IL-3Ralpha in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity, and poor prognosis. Blood 100:2980–2988

    Article  PubMed  CAS  Google Scholar 

  • Thanopoulou E, Cashman J, Kakagianne T et al (2004) Engraftment of NOD/SCID-beta2 microglobulin null mice with multilineage neoplastic cells from patients with myelodysplastic syndrome. Blood 103:4285–4293

    Article  PubMed  CAS  Google Scholar 

  • Van Rhenen A, Van Dongen GA, Kelder A et al (2007) The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells. Blood 110:2659–2666

    Article  PubMed  Google Scholar 

  • Visnjic D, Kalajzic Z, Rowe DW et al (2004) Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103:3258–3264

    Article  PubMed  CAS  Google Scholar 

  • Wada H, Masuda K, Satoh R et al (2008) Adult T-cell ­progenitors retain myeloid potential. Nature 452:768–772

    Article  PubMed  CAS  Google Scholar 

  • Walkley CR, Olsen GH, Dworkin S et al (2007) A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency. Cell 129:1097–1110

    Article  PubMed  CAS  Google Scholar 

  • Walter MJ, Shen D, Ding L et al (2012) Clonal architecture of secondary acute myeloid leukemia. N Eng J Med 366:1090–1098

    Article  CAS  Google Scholar 

  • Weerkamp F, Baert MR, Brugman MH et al (2006) Human thymus contains multipotent progenitors with T/B lymphoid, myeloid, and erythroid lineage potential. Blood 107:3131–3137

    Article  PubMed  CAS  Google Scholar 

  • White NJ, Nacheva E, Asimakopoulos FA et al (1994) Deletion of chromosome 20q in myelodysplasia can occur in a multipotent precursor of both myeloid cells and B cells. Blood 83:2809–2816

    PubMed  CAS  Google Scholar 

  • Will B, Zhou L, Vogler TO et al (2012) Stem and progenitor cells in myelodysplastic syndromes show aberrant stage-specific expansion and harbor genetic and epigenetic alterations. Blood 120:2076–2086

    Article  PubMed  CAS  Google Scholar 

  • Williams DE, Eisenman J, Baird A et al (1990) Identification of a ligand for the c-kit proto-oncogene. Cell 63:167–174

    Article  PubMed  CAS  Google Scholar 

  • Witherspoon RP, Schubach W, Neiman P et al (1985) Donor cell leukemia developing six years after marrow grafting for acute leukemia. Blood 65:1172–1174

    PubMed  CAS  Google Scholar 

  • Yang L, Dybedal I, Bryder D et al (2005) IFN-gamma negatively modulates self-renewal of repopulating human hemopoietic stem cells. J Immunol 174:752–757

    PubMed  CAS  Google Scholar 

  • Yang AS, Doshi KD, Choi SW et al (2006) DNA methylation changes after 5-aza-2′-deoxycytidine therapy in patients with leukemia. Cancer Res 66:5495–5503

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Sanada M, Shiraishi Y et al (2011) Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478:64–69

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Niu C, Ye L et al (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425:836–841

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Zhao H, Zhao D et al (2012) SDF-1/CXCR4 axis in myelodysplastic syndromes: correlation with angiogenesis and apoptosis. Leuk Res 36:281–286

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Nimer MD .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Greenblatt, S.M., Deeg, H.J., Nimer, S.D. (2013). MDS Stem Cell Biology. In: Myelodysplastic Syndromes. Hematologic Malignancies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36229-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36229-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36228-6

  • Online ISBN: 978-3-642-36229-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics