Skip to main content

Spatial Clustering and Autocorrelation of Health Events

  • Living reference work entry
  • First Online:
Handbook of Regional Science
  • 108 Accesses

Abstract

Since the mid-nineteenth century, scientists have sought ways to quantify observed spatial patterns of disease incidence and prevalence in order to identify clusters of high risk. We review popular methods for identifying clusters and clustering of disease in geographically referenced epidemiologic data. We identify the questions of interest and illustrate how the combination available data and the choice of analytic method often answer a more specific question, i.e., each method tends to focus on specific types, shapes, and scales of clusters and clustering. Recognizing the specification implicit in the choice of data and method provides a critical context for interpreting the results of a spatial epidemiologic analysis accurately and reliably for stakeholders ranging from other spatial analysts to members of general public.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abrams B, Anderson H, Blackmore C, Bove FJ, Condon SK, Eheman CR, Fagliano J, Haynes LB, Lewis LS, Major J, McGeehin MA, Simms E, Sircar K, Soler J, Stanbury M, Watkins SM, Wartenberg D (2013) Investigating suspected cancer clusters and responding to community concerns: guidelines from CDC and the Council of State and Territorial Epidemiologists. Morb Mortal Wkly Rep 62(8):1–14

    Google Scholar 

  • Aldstadt J (2010) Spatial clustering. In: Fischer MM, Getis A (eds) Handbook of applied spatial analysis. Springer, Berlin/Heidelberg, pp 279–300

    Chapter  Google Scholar 

  • Amin RW, Hendryx M, Shull M, Bohnert A (2014) A cluster analysis of pediatric cancer incidence rates in Florida: 2000–2010. Stat Public Policy 1(1):69–77

    Article  Google Scholar 

  • Anselin L (1995) Local indicators of spatial association – LISA. Geogr Anal 27(2):93–115

    Article  Google Scholar 

  • Besag J, Newell J (1991) The detection of clusters in rare diseases. J Roy Stat Soc, Series A, 154:143–155

    Google Scholar 

  • Besag J, York JC, Mollié A (1991) Bayesian image restoration, with two applications in spatial statistics (with discussion). Ann Inst Stat Math 43(1):1–109

    Article  Google Scholar 

  • Blangiardo M, Cameletti M (2015) Spatial and spatio-temporal Bayesian models with R-INLA. Wiley, Chichester

    Book  Google Scholar 

  • Deville P, Linard C, Martin S, Gilbert M, Stevens FR, Gaughan AE, Blondel VD, Tatem AJ (2014) Dynamic population mapping using mobile phone data. Proc Natl Acad Sci 111(45):15888–15893

    Article  Google Scholar 

  • Hazelton ML, Davies TM (2009) Inference based on kernel estimates of the relative risk function in geographical epidemiology. Biom J 51(1):98–109

    Article  Google Scholar 

  • Heaton MJ (2014) Wombling analysis of childhood tumor rates in Florida. Stat Public Policy 1(1):60–67

    Article  Google Scholar 

  • Kelsall JE, Diggle PJ (1995) Non-parametric estimation of spatial variation in relative risk. Stat Med 14(21/22):2335–2342

    Article  Google Scholar 

  • Koch T (2005) Cartography of disease: maps, mapping, and medicine. ESRI Press, Redlands

    Google Scholar 

  • Kulldorff M (1997) A spatial scan statistic. Commun Stat Theory Methods 26(6):1481–1496

    Article  Google Scholar 

  • Lawson AB (2006) Statistical methods in spatial epidemiology, 2nd edn. Wiley, Chichester

    Book  Google Scholar 

  • Lawson AB (2018) Bayesian disease mapping: hierarchical models for spatial epidemiology, 3rd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  • Lawson AB, Rotejanaprasert C (2014) Childhood brain cancer in Florida: a Bayesian clustering approach. Stat Public Policy 1(1):99–107

    Article  Google Scholar 

  • Lloyd CD (2010) Local models for spatial analysis, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  • Sutton P, Roberts D, Elvidge C, Baugh K (2001) Census from heaven: an estimate of the global human population using night-time satellite imagery. Int J Remote Sens 22(16):3061–3076

    Article  Google Scholar 

  • Tango T (2010) Statistical methods for disease clustering. Springer, New York

    Book  Google Scholar 

  • Thun MJ, Sinks T (2004) Understanding cancer clusters. CA Cancer J Clin 54(5):273–280

    Article  Google Scholar 

  • Waller LA (2009) Detection of clustering in spatial data. In: Fotheringham AS, Rogerson PA (eds) The SAGE handbook of spatial analysis. SAGE, London, pp 299–320

    Google Scholar 

  • Waller LA (2014) Putting spatial statistics (back) on the map. Spatial Stat 9(1):4–19

    Article  Google Scholar 

  • Waller LA (2015) Discussion: statistical cluster detection, epidemiologic interpretation, and public health policy. Stat Public Policy 2(1):1–8

    Article  Google Scholar 

  • Waller LA (2017) Mapping in public health. In: Brunn SD, Dodge M (eds) Mapping across academia. Springer, Dordrecht, pp 169–181

    Chapter  Google Scholar 

  • Waller LA, Gotway CA (2004) Applied spatial statistics for public health data. Wiley, Hoboken

    Book  Google Scholar 

  • Waller LA, Jacquez GM (1995) Disease models implicit in tests of disease clustering. Epidemiology 6(6):584–590

    Article  Google Scholar 

  • Wang H, Rodriguez A (2014) Identifying pediatric cancer clusters in Florida using loglinear models and generalized lasso penalties. Stat Public Policy 1(1):96–86

    Article  Google Scholar 

  • Zhang Z, Lim CY, Maiti T (2014) Analyzing 2000–2010 childhood age-adjusted cancer rates in Florida: a spatial clustering approach. Stat Public Policy 1(1):120–128

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lance A. Waller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Waller, L.A. (2019). Spatial Clustering and Autocorrelation of Health Events. In: Fischer, M., Nijkamp, P. (eds) Handbook of Regional Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36203-3_80-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36203-3_80-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36203-3

  • Online ISBN: 978-3-642-36203-3

  • eBook Packages: Springer Reference Economics and FinanceReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics