Skip to main content

Reference Electrodes for Use in Nonaqueous Solutions

  • Chapter
  • First Online:
Handbook of Reference Electrodes

Abstract

This chapter deals with the problem of the reference electrodes for use in conventional nonaqueous solvents, mainly from practical aspects. The reference electrodes used in nonaqueous solvents can be classified into two groups. One group uses, in constructing reference electrodes, the same solvent as that of the solution under study. The other group uses a solvent different from that of the solution under study; in most cases, aqueous reference electrodes are used but, in some cases, nonaqueous solvents other than that of the solution under study are used. Aqueous reference electrodes are usually an aqueous silver/silver chloride (Ag/AgCl) electrode or a calomel electrode (mostly saturated calomel electrode, SCE). Here, the reference electrodes of these two groups are discussed in detail in Sects. 6.1 and 6.2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this book, there are other chapters related to nonaqueous systems. Chapter 1 by Inzelt is on the electrode potentials and includes a section on the problem to relate the electrode potentials between different media. Chapter 2 by Gritzner is on the reference redox systems in nonaqueous systems and their relation to water. Chapter 3 by Tsirlina is on the liquid junction potential and somewhat deals with the problem between different solvents. Chapter 7 by Bhatt and Snook is on the reference electrodes for room temperature ionic liquids. See these chapters as well.

  2. 2.

    (1) See footnote 11 for examples of the quasi-reference electrode of metal wire coated with a redox couple. (2) Supercritical fluids are not dealt with in this chapter, but, in the electrochemistry in them, pseudo- or quasi-reference electrodes are usually used.

  3. 3.

    These properties are not specific to the reference electrodes of this group. All reference electrodes, including ones for aqueous solutions, must have these properties in general.

  4. 4.

    Silver perchlorate (AgClO4, hygroscopic) may explode by friction or by heating and it must be handled with care. The use of other silver salts (AgNO3, AgBF4, AgSO3CF3, etc.) is recommended.

  5. 5.

    Solvent-independent potential scale is obtained by using, as the potential reference, a redox couple that is considered to have the same potentials in all solvents. Such redox couple, I +/I 0 or I 0/I , should have the relation \( \Delta G_{{\mathrm{ t}{}({{\rm I}^{+}},\mathrm{ R}\to \mathrm{ S})}}^{{\rlap{-}{\mathrm{ o}}}}=\Delta G_{{\mathrm{ t}{}({{\rm I}^0},\mathrm{ R}\to \mathrm{ S})}}^{{\rlap{-}{\mathrm{ o}}}} \) or \( \Delta G_{{\mathrm{ t}({{\rm I}^0},\mathrm{ R}\to \mathrm{ S})}}^{{\rlap{-}{\mathrm{ o}}}}=\Delta G_{{\mathrm{ t}({{\rm I}^{-}},\mathrm{ R}\to \mathrm{ S})}}^{{\rlap{-}{\mathrm{ o}}}} \), where \( \Delta G_{{\mathrm{ t}{}(\mathrm{ i},\mathrm{ R}\to \mathrm{ S})}}^{{\rlap{-}{\mathrm{ o}}}} \) shows the variation in the solvation energy of species i between R (reference solvent) and S (the solvent under study). This relation is nearly satisfied by redox couples like BCr+/BCr and Fc+/Fc, especially when R and S are both aprotic (see page 41 of [177]).

  6. 6.

    The values of \( \log {\gamma_{{\mathrm{ t}{}(\mathrm{ A}{{\mathrm{ g}}^{+}},{{\mathrm{ H}}_2}\mathrm{ O}\to \mathrm{ S})}}} \) are 3.2 for (S=) PC, 1.6 for Ac, 1.2 for MeOH, −0.7 for TMS, −3.0 for DMF, −4.1 for AN, −4.6 for NMP, −5.1 for DMA, −6.1 for DMSO, −7.7 for HMPA, and −17.9 for DMTF (see Table 2.7 of [177]).

  7. 7.

    This reference electrode was used in the potentiometric study of acid–base equilibria in PC using a pH glass electrode, in which the potential of the reference electrode should be very stable [178].

  8. 8.

    In DMSO, if the electrode is 1 mM in Ag+ (Ag|1 mM Ag+ + 0.1 M LiClO4 (DMSO)), black precipitate of Ag0 is formed and the potential shifts by 150 mV to the negative direction in 10 days [89]. With 10 mM Ag+, the stability of the potential is much improved.

  9. 9.

    This applies to aprotic solvents that are hard base in HSAB concept. In soft base aprotic solvents like DMTF, AgCl is considerably dissolved by being dissociated into Ag+ and Cl, because Ag+ is solvated extremely strongly.

  10. 10.

    A reference electrode of large area was used because the polarograph was a two-electrode instrument. With this instrument, the reference electrode also played the role of the counter electrode and considerable current passed through it. With a three-electrode instrument, which is now in common use, the reference electrode can be much smaller in size.

  11. 11.

    Peerce and Bard [191] coated a Pt electrode with poly(vinylferrocene) (PVFc) and the electrode was kept at the half-wave potential of the PVFc–PVFc+ couple to make their ratio 1:1. The electrode potential was constant and reproducible in deaerated AN over 21 h, but it was unstable in other nonaqueous solvents, probably because of the gradual dissolution of PVFc+. Efforts to prevent the dissolution of PVFc+ did not much improve the stability of the potential [192]. Bard’s group also prepared metal/polypyrrole quasi-reference electrode (QRE) for voltammetry in nonaqueous solutions [193]. It was easily fabricated by cyclic voltammetry of the metal electrode in 10 mM pyrrole + 0.1 M Bu4NPF6 (AN or DMC). Its potential was more stable than the Ag- and Pt-wire QREs and even a very small size for use in nanocells was possible.

  12. 12.

    The LJP between two solutions in the same (aqueous or nonaqueous) solvent has been discussed in Chap. 3 by Tsirlina. However, the LJP between two solutions in different solvents is quite different from that.

  13. 13.

    The reliability of the reference electrolyte (Ph4AsBPh4) assumption has been considered to be the best among various extra-thermodynamic assumptions (see page 41 in [177]).

  14. 14.

    (1) The variations in the actual (experimental) values of components (a) and (b) were obtained by measuring the potential differences of Cell (I): Ag|5 mM AgClO4, 20 mM Et4NClO4 (S1)¦¦20 mM Et4NClO4 (S1c 1 MX (S1c 2 MX (S2)¦20 mM Et4NClO4 (S2)¦¦5 mM AgClO4, 20 mM Et4NClO4 (S2)| Ag. In the case of component (a), the values of c 1 and c 2 were varied and necessary corrections were made. In the case of component (b), the electrolyte MX was varied, keeping the values of c 1 and c 2 constant and making appropriate corrections. E corrected in Figs. 6.4, 6.6, and 6.7 shows the corrected potential differences. (2) For the actual (experimental) variations in component (c), Cell (II): Ag|5 mM AgClO4, 25 mM Et4NClO4 (S1=AN)¦¦c Et4NClO4 (S1=AN)¦c 3 MX (S3c Et4NClO4 (S2)¦¦5 mM AgClO4, 25 mM Et4NClO4 (S2)|Ag, was used and its potential differences were measured by varying solvent S3 for fixed MX, S1, and S2 and making necessary corrections. The values detected in this case (E) were the sum of the variations in component (c) at junctions S1/S3 and S3/S2.

  15. 15.

    Equations (6.1) and (6.2) were obtained by integrating the first and second terms on the right hand of Eq. (A), assuming linear variations in a (i), t (i), and \( \mu_{(\mathrm{ i})}^{{\rlap{-}{\mathrm{ o}}}} \) from the values in S1 to the values in S2 (Fig. 6.5a).

    $$ {E_{\mathrm{ j}}}=-({RT \left/ {F) } \right.}\int_{{{{\mathrm{ S}}_1}}}^{{{{\mathrm{ S}}_2}}} {\sum {({{{{t_{(\mathrm{ i})}}}} \left/ {{{z_{(\mathrm{ i})}})}} \right.}\mathrm{ d}\ln {a_{(\mathrm{ i})}}} -({1 \left/ {F) } \right.}} \int_{{{{\mathrm{ S}}_1}}}^{{{{\mathrm{ S}}_2}}} {\sum {({{{{t_{(\mathrm{ i})}}}} \left/ {{{z_{(\mathrm{ i})}})}} \right.}\mathrm{ d}\mu_{{(\mathrm{ i})}}^{{\rlap{-}{\mathrm{ o}}}}} } +{E_{\mathrm{ j},\mathrm{ solv}}}. $$
    (A)
  16. 16.

    At immiscible junctions H2O/NB and H2O/DCE, the slopes of the near-linear relations between experimental (actual) variations in component (b) and the values calculated by Eq. (6.2) are 1.0. Generally, the slopes approach 1.0 with the decrease in miscibility of the solvents on two sides [223]. Actually, at immiscible junctions, ions are distributed at the abrupt interface (thickness ~1 nm), as in Fig. 6.5b, and the distribution potential, Δϕ i , is generated. Moreover, on both sides of the interface, the LJPs between the same solvent, Δϕ 1 and Δϕ 2, are generated [223]. The potential difference at the immiscible junction is, therefore, the sum of Δϕ i , Δϕ 1, and Δϕ 2. Here, for immiscible c MX(H2O)¦c MX(NB), this potential difference was confirmed to agree fairly well with the results calculated by Eq. (6.2). It is interesting that Eq. (6.2) is nearly applicable even to immiscible junctions.

  17. 17.

    At miscible junctions, solvents on both sides mutually diffuse and the thickness of the diffusion layer expands with time (0.05–5 mm). Ions also diffuse between the two solvents; here, the ionic diffusion due to the gradients in ionic \( \mu_{{(\mathrm{ i})}}^{{\rlap{-}{\mathrm{ o}}}} \) value will cause a kind of ionic distribution at or near the layers of solvent diffusion. However, the fact that the experimental variations in component (b) are much less than the values calculated by Eq. (6.2) seems to show that the actual ionic distribution is much less in extent than the ionic distribution expected from the theoretically variation in \( \mu_{{(\mathrm{ i})}}^{{\rlap{-}{\mathrm{ o}}}} \) value. The cause for it must be elucidated, but ionic random walks which result in ionic diffusion seem to play some role [223]. Because the time and the distance of an average step of the random walk are very short, the solvation/desolvation processes cannot catch up with the theoretical \( \mu_{{(\mathrm{ i})}}^{{\rlap{-}{\mathrm{ o}}}} \) value, making component (b) smaller.

  18. 18.

    The values of component (c) at H2O/S can be estimated by assuming that the values of component (c) at H2O/NB and at AN/other aprotic solvent(s) are negligible. At the electrolyte concentration of 1 mM, the values estimated by this method are 122 mV for H2O/DMF and H2O/DMSO, 44 mV for H2O/AN, and 30 mV for H2O/PC, though the values somewhat decrease with the increase in electrolyte concentrations [235].

References

  1. Lund H (2001) Practical problems in electrolysis. In: Lund H, Hammerich O (eds) Organic electrochemistry, 4th edn. Marcel Dekker, New York, p 246

    Google Scholar 

  2. Mann CK (1969) Nonaqueous solvents for electroanalytical use. In: Bard AJ (ed) Electroanalytical chemistry, vol 3. Marcel Dekker, New York, p 57

    Google Scholar 

  3. Butler JN (1970) Reference electrodes in aprotic organic solvents. In: Delahay P, Tobias CW (eds) Advances in electrochemistry and electrochemical engineering, vol 7. Interscience, New York, p 77

    Google Scholar 

  4. Hills GJ (1961) Reference electrodes in nonaqueous solutions. In: Ives DJG, Janz GJ (eds) Reference electrodes, theory and practice. Academic, New York, p 433

    Google Scholar 

  5. Glenn RA (1953) Anal Chem 25:1916

    Article  CAS  Google Scholar 

  6. Číhalík J, Šimek J (1958) Collect Czech Chem Commun 23:615

    Google Scholar 

  7. Bruckenstein S, Kolthoff IM (1956) J Am Chem Soc 78:2974

    Article  CAS  Google Scholar 

  8. Larson WD, MacDougall FH (1937) J Phys Chem 41:493

    Article  CAS  Google Scholar 

  9. Al-Qaraghuli N, Stone KG (1959) Anal Chem 31:1448

    Article  CAS  Google Scholar 

  10. Mather WB, Anson FC (1959) Anal Chim Acta 21:468

    Article  CAS  Google Scholar 

  11. Maccà C, Soldà L (2002) Ann Chim 92:249

    Google Scholar 

  12. Mather WB, Anson FC (1961) Anal Chem 33:1634

    Article  CAS  Google Scholar 

  13. Piccardi G, Guidelli R (1971) Anal Chem 43:1646

    Article  CAS  Google Scholar 

  14. Gritzner G (1990) Pure Appl Chem 62:1839

    Article  CAS  Google Scholar 

  15. Lewandowski A, Szukalska A, Galinski M (1995) New J Chem 19:1259

    Google Scholar 

  16. Everett DH, Rasmussen SE (1954) J Chem Soc 1954:2812

    Article  Google Scholar 

  17. Bond AM, Hendrickson AR, Martin RL (1973) J Am Chem Soc 95:1449

    Article  CAS  Google Scholar 

  18. Bond AM, Grabaric BS, Jackowski JJ (1978) Inorg Chem 17:2153

    Article  CAS  Google Scholar 

  19. Arthur P, Lyons H (1952) Anal Chem 24:1422

    Article  Google Scholar 

  20. Tsierkezos NG (2007) J Solut Chem 36:289 (This electrode has been used in such solvents as Ac, AN, DCM, DMA, DMF, DMSO, NMF, and 3-pentanone)

    Article  CAS  Google Scholar 

  21. Mackor EL (1951) Rec Trav Chim 70:457

    Article  CAS  Google Scholar 

  22. Pleskov VA (1948) Zh Fiz Khim 22:351

    CAS  Google Scholar 

  23. Larson RC, Iwamoto RT, Adams RN (1961) Anal Chim Acta 25:371

    CAS  Google Scholar 

  24. Coetzee JF, Padmanabhan GR (1962) J Phys Chem 66:1708

    Article  CAS  Google Scholar 

  25. Alexander R, Ko ECF, Mac YC, Parker AJ (1967) J Am Chem Soc 89:3703

    Article  CAS  Google Scholar 

  26. Kratochvil B, Lorah E, Garber C (1969) Anal Chem 41:1793

    Article  CAS  Google Scholar 

  27. Billon JP (1959/60) J Electroanal Chem 1:486

    Google Scholar 

  28. Lund H (1957) Acta Chem Scand 11:491

    Article  CAS  Google Scholar 

  29. Izutsu K, Ito M, Sarai E (1985) Anal Sci 1:341

    Article  CAS  Google Scholar 

  30. Popov AI, Geske DH (1957) J Am Chem Soc 79:2074

    Article  CAS  Google Scholar 

  31. Hanselman RB, Streuli CA (1956) Anal Chem 28:916

    Article  CAS  Google Scholar 

  32. Barthel J, Neueder R, Schröder A (1997) Can J Chem 75:1500

    Article  CAS  Google Scholar 

  33. Kolthoff IM, Thomas FG (1965) J Phys Chem 69:3049

    Article  CAS  Google Scholar 

  34. Bashkin JK, Kinlen PJ (1990) Inorg Chem 29:4507

    Article  CAS  Google Scholar 

  35. Su B, Hatay I, Ge PY, Mendez M, Corminboeuf C, Samec Z, Ersoz M, Girault HH (2010) Chem Commun 46:2918

    Article  CAS  Google Scholar 

  36. Coetzee JF, Gardner CW Jr (1982) Anal Chem 54: 2530, 2625

    Google Scholar 

  37. Mihajlović R, Simić Z, Mihajlović L, Jokić A, Vukašinović M, Rakićević N (1996) Anal Chim Acta 318:287

    Article  Google Scholar 

  38. Lee HL, Fujinaga T (1979) Bull Inst Chem Res Kyoto Univ 57:285

    CAS  Google Scholar 

  39. Navaneethakrishnan R, Warf JC (1974) J Inorg Nucl Chem 36:1311

    Article  CAS  Google Scholar 

  40. Tiedemann WH, Bennion DN (1970) J Electrochem Soc 117:203

    Article  CAS  Google Scholar 

  41. Sedlet J, De Vries T (1951) J Am Chem Soc 73:5808

    Article  CAS  Google Scholar 

  42. Hammer RN, Lagowski JJ (1962) Anal Chem 34:597

    Article  CAS  Google Scholar 

  43. Jaworski JS, Cembor M, Orlik M (2005) J Electroanal Chem 582:165

    Article  CAS  Google Scholar 

  44. Lines R, Parker VD (1977) Acta Chem Scand B 31:369

    Article  Google Scholar 

  45. Howell JO, Wightman RM (1984) J Phys Chem 88:3915

    Article  CAS  Google Scholar 

  46. Bond AM, Mann TF (1987) Electrochim Acta 32:863

    Article  CAS  Google Scholar 

  47. Kim K, Kim I, Maiti N, Kwon SJ, Bucella D, Egorova OA, Lee YS, Kwak J, Churchill DG (2009) Polyhedron 28:2418

    Article  CAS  Google Scholar 

  48. Abou-Elenien GM, Ismail NA, Hassanin MM, Fahmy AA (1992) Can J Chem 70:2704

    Article  CAS  Google Scholar 

  49. Abou-Elenien GM, Ismail NA, Magd Eldin AA (1992) Monatsh Chem 123:1117

    Article  CAS  Google Scholar 

  50. Fawcett WR, Opallo M, Fedurco M, Lee JW (1993) J Am Chem Soc 115:196

    Article  CAS  Google Scholar 

  51. Dey AN (1968) J Electrochem Soc 115:160

    Article  CAS  Google Scholar 

  52. Izutsu K, Ohmaki M (1996) Talanta 43:643

    Article  CAS  Google Scholar 

  53. Aurbach D (1989) J Electrochem Soc 136:906

    Article  CAS  Google Scholar 

  54. Coetzee JF, Chang TH, Deshmukh BK, Fonong T (1993) Electroanalysis 5:765

    Article  CAS  Google Scholar 

  55. Bond AM, Mann TF, Tondreau GA, Sweigart DA (1990) Inorg Chim Acta 169:181

    Article  CAS  Google Scholar 

  56. Beal JL, Mann CA (1937) J Phys Chem 42:283

    Article  CAS  Google Scholar 

  57. Bos M, Dahmen EAMF (1973) Anal Chim Acta 63:185

    Article  CAS  Google Scholar 

  58. Yaman ŞÖ, Esentürk E, Kayran C, Önal AM (2002) Z Naturforsch 57b:92

    Google Scholar 

  59. Bond AM, Oldham KB, Snook GA (2000) Anal Chem 72:3492

    Article  CAS  Google Scholar 

  60. Pournaghi-Azar MH, Dastangoo H (2000) Microchem J 64:187

    Article  CAS  Google Scholar 

  61. Pournaghi-Azar MH, Dastangoo H (2000) Anal Chim Acta 405:135

    Article  CAS  Google Scholar 

  62. Röhrscheid F, Balch AL, Holm RH (1966) Inorg Chem 5:1542

    Article  Google Scholar 

  63. Ito N, Aoyagui S, Saji T (1981) J Electroanal Chem 130:357

    Article  CAS  Google Scholar 

  64. Hoffman AK, Hodgson WG, Maricle DL, Jura WH (1964) J Am Chem Soc 86:631

    Article  Google Scholar 

  65. Aurbach D, Daroux M, Faguy P, Yeager E (1991) J Electroanal Chem 297:225

    Article  CAS  Google Scholar 

  66. Scrosati B, Pecci G, Pistoia G (1968) J Electrochem Soc 115:506

    Article  CAS  Google Scholar 

  67. Bréant M, Georges J, Imbert J-L, Schmitt D (1971) Ann Chim 6:245

    Google Scholar 

  68. Paris J, Plichon V (1981) Electrochim Acta 26:1823

    Article  CAS  Google Scholar 

  69. Nakamura T, Ren J, Hinoue T, Umemoto K (2003) Anal Sci 19:991

    Article  CAS  Google Scholar 

  70. Reiter J, Vondrák J, Mička Z (2007) Solid State Ionics 177:3501

    Article  CAS  Google Scholar 

  71. Rieger PH, Bernal I, Reinmuth WH, Fraenkel GK (1963) J Am Chem Soc 85:683

    Article  CAS  Google Scholar 

  72. Aylward GH, Garnett JL, Sharp JH (1967) Anal Chem 39:457

    Article  CAS  Google Scholar 

  73. Butler JN (1968) J Phys Chem 72:3288

    Article  CAS  Google Scholar 

  74. Headridge JB, Ashraf M, Dodds HLH (1968) J Electroanal Chem 16:114

    Article  CAS  Google Scholar 

  75. McMasters DL, Dunlap RB, Kuempel JR, Kreider LW, Shearer TR (1967) Anal Chem 39:103

    Article  CAS  Google Scholar 

  76. Dueber RE, Dickens PG (1991) J Electrochem Soc 138:L79

    Article  CAS  Google Scholar 

  77. Marple LW (1967) Anal Chem 39:844

    Article  CAS  Google Scholar 

  78. Synnott JC, Butler JN (1969) Anal Chem 41:1890

    Article  CAS  Google Scholar 

  79. Barbasheva IE, Povarov YM, Lukovtsev PD (1967) Sov Electrochem 3:1027 (Elektrokhimiya 3:1149)

    Google Scholar 

  80. Povarov YM, Barbasheva IE, Lukovtsev PD (1967) Sov Electrochem 3:1071 (Elektrokhimiya 3:1202)

    Google Scholar 

  81. Juillard J (1966) J Chim Phys 63:1190

    CAS  Google Scholar 

  82. Ritchie CD, Uschold RE (1967) J Am Chem Soc 89:1721

    Article  CAS  Google Scholar 

  83. Kolthoff IM, Chantooni MK Jr, Bhowmik S (1968) J Am Chem Soc 90:23

    Article  CAS  Google Scholar 

  84. Johnson EL, Pool KH, Hamm RE (1966) Anal Chem 38:183

    Article  CAS  Google Scholar 

  85. Kolthoff IM, Reddy TB (1962) Inorg Chem 1:189

    Article  CAS  Google Scholar 

  86. Simonova OR, Sheinin VB, Berezin BD (2007) J Anal Chem 62:680

    Article  CAS  Google Scholar 

  87. Giordano MC, Bazán JC, Arvia AJ (1966) Electrochim Acta 11:741

    Article  CAS  Google Scholar 

  88. Courtot-Coupez J, LeDemezet M (1966) CR Acad Sci Paris 263:997

    CAS  Google Scholar 

  89. Courtot-Coupez J, LeDémézet M (1967) Bull Soc Chim Fr 1967:4744

    Google Scholar 

  90. Rumbaut NA, Peeters HL (1967) Bull Soc Chim Belg 76:33

    Article  CAS  Google Scholar 

  91. Cogley DR, Butler JN (1966) J Electrochem Soc 113:1074

    CAS  Google Scholar 

  92. Ahrland S, Persson I (1980) Acta Chem Scand A 34:645

    Article  Google Scholar 

  93. Smyrl WH, Tobias CW (1966) J Electrochem Soc 113:754

    Article  CAS  Google Scholar 

  94. Zara AJ, Bulhões LOS (1982) Anal Lett 15:775

    Article  CAS  Google Scholar 

  95. MacFarlane A, Hartley H (1932) Philos Mag 13:425

    CAS  Google Scholar 

  96. Goodhue LD, Hixon RM (1935) J Am Chem Soc 57:1688

    Article  CAS  Google Scholar 

  97. Aurbach D, Gofer Y, Ben-Zion M, Aped P (1992) J Electroanal Chem 339:451

    Article  CAS  Google Scholar 

  98. Laitinen HA, Nyman CJ (1948) J Am Chem Soc 70:3002

    Article  CAS  Google Scholar 

  99. Alpatova NM, Krishtalik LI, Pleskov YV (1987) Top Curr Chem 138:149

    Article  CAS  Google Scholar 

  100. Harima Y (1988) J Electroanal Chem 252:53

    Article  CAS  Google Scholar 

  101. Bruckenstein S, Mukherjee LM (1960) J Phys Chem 64:1601

    Google Scholar 

  102. Schaap WB, Bayer RE, Siefker JR, Kim JY, Brewster PW, Schmidt FC (1961) Rec Chem Prog 22:197

    Google Scholar 

  103. Mandel M, Decroly P (1958) Nature 182:794

    Article  CAS  Google Scholar 

  104. Mukherjee LM (1957) J Am Chem Soc 79:4040

    Article  CAS  Google Scholar 

  105. Pinfold TA, Sebba F (1956) J Am Chem Soc 78:2095

    Article  CAS  Google Scholar 

  106. Arnac M, Verboom G (1973) Anal Chem 45:1954

    Article  CAS  Google Scholar 

  107. Geng L, Ewing AG, Jernigan JC, Murray RW (1986) Anal Chem 58:852

    Article  CAS  Google Scholar 

  108. Dubois JÉ, Lacaze PC, Ficquelmont AM (1966) CR Acad Sci Paris 262:181

    CAS  Google Scholar 

  109. Gal JY, Yvernault T (1971) Bull Soc Chim Fr 1971:2770

    Google Scholar 

  110. Izutsu K, Sakura S, Fujinaga T (1972) Bull Chem Soc Jpn 45:445

    Article  CAS  Google Scholar 

  111. Kanzaki Y, Aoyagui S (1972) J Electroanal Chem 36:297

    Article  CAS  Google Scholar 

  112. Burrows B, Jasinski R (1968) J Electrochem Soc 115:348 (detailed study on Cu/CuF2 electrode)

    Article  CAS  Google Scholar 

  113. Clifford AF, Zamora E (1961) Trans Faraday Soc 57:1963

    Article  CAS  Google Scholar 

  114. Clifford AF, Pardieck WD, Wadley MW (1966) J Phys Chem 70:3241

    Article  CAS  Google Scholar 

  115. Macleod ID, Bond AM, O’Donnell TA (1973) J Electroanal Chem 45:89

    Article  CAS  Google Scholar 

  116. Vinnikov YY, Shavkunov SP, Bil’dinov KN (1976) Sov Electrochem 12:1022 (Elektrokhimiya 12:1113)

    Google Scholar 

  117. Koerber GG, DeVries T (1952) J Am Chem Soc 74:5008

    Article  CAS  Google Scholar 

  118. Hackerman N, Snavely ES Jr, Fiel LD (1967) Electrochim Acta 12:535

    Article  CAS  Google Scholar 

  119. Kaurova GI, Grubina LM, Adzhemyan TA (1966) Sov Electrochem 3:1092 (Elektrokhimia 3:1222)

    Google Scholar 

  120. Doughty AG, Fleischmann M, Pletcher D (1974) J Electroanal Chem 51:329

    Article  CAS  Google Scholar 

  121. Wang CM, Mir Q-C, Maleknia S, Mallouk TE (1988) J Am Chem Soc 110:3710

    Article  CAS  Google Scholar 

  122. Coetzee JF, Hedrick JL (1963) J Phys Chem 67:221

    Article  CAS  Google Scholar 

  123. Pemberton JE, Shen A (1999) Phys Chem Chem Phys 1:5671

    Article  CAS  Google Scholar 

  124. Brossia CS, Kelly RG (1996) Electrochim Acta 41:2579

    Article  CAS  Google Scholar 

  125. Johari GP, Tewari PH (1966) J Phys Chem 70:197

    Article  CAS  Google Scholar 

  126. Knecht LA, Kolthoff IM (1962) Inorg Chem 1:195

    Article  CAS  Google Scholar 

  127. Irish DE, Deng Z, Odziemkowski M (1995) J Power Sources 54:28

    Article  CAS  Google Scholar 

  128. Rauh RD, Brummer SB (1977) Electrochim Acta 22:85

    Article  CAS  Google Scholar 

  129. Plichta E, Salomon M, Slane S, Uchiyama M, Chua D, Ebner WB, Lin HW (1987) J Power Sources 21:25

    Article  CAS  Google Scholar 

  130. Fung YS, Lai HC (1989) J Appl Electrochem 19:239

    Article  CAS  Google Scholar 

  131. Harima Y, Kurihara H, Aoyagui S (1981) J Electroanal Chem 124:103

    Article  CAS  Google Scholar 

  132. Gritzner G (1983) J Electroanal Chem 144:259

    Article  CAS  Google Scholar 

  133. Luksha E, Criss CM (1966) J Phys Chem 70:1496

    Article  CAS  Google Scholar 

  134. Salomon M (1974) J Phys Chem 78:1817

    Article  CAS  Google Scholar 

  135. Juillard J, Kolthoff IM (1971) J Phys Chem 75:2496

    Article  CAS  Google Scholar 

  136. Izutsu K, Yamamoto H (1996) Anal Sci 12:905

    Article  CAS  Google Scholar 

  137. Payne R (1969) J Phys Chem 73:3598

    Article  CAS  Google Scholar 

  138. Mayrhofer W, Lasia A, Gritzner G (1991) J Electroanal Chem 317:219

    Article  CAS  Google Scholar 

  139. Bréant M (1976) Bull Soc Chim Fr 1976:28

    Google Scholar 

  140. Bréant M, Bazouin M, Buisson C, Dupin M, Rebattu JM (1968) Bull Soc Chim Fr 1968:5065

    Google Scholar 

  141. Bréant M, Buisson C (1970) J Electroanal Chem 24:145

    Article  Google Scholar 

  142. Odziemkowski M, Krell M, Irish DE (1992) J Electrochem Soc 139:3052

    Article  CAS  Google Scholar 

  143. Cauquis G, Serve D (1966) Bull Soc Chim Fr 1966:302

    Google Scholar 

  144. Mihajlović L, Nikolić-Mandić S, Vukanović B, Mihajlović R (2009) Cent Eur J Chem 7:900

    Article  CAS  Google Scholar 

  145. Salomon M, Stevenson BK (1973) J Phys Chem 77:3002

    Article  CAS  Google Scholar 

  146. Butler JN (1967) Anal Chem 39:1799

    Article  CAS  Google Scholar 

  147. Butler JN, Cogley DR, Zurosky W (1968) J Electrochem Soc 115:445

    Article  CAS  Google Scholar 

  148. Courtot-Coupez J, L’Her M (1969) Bull Soc Chim Fr 1969:675

    Google Scholar 

  149. Kirowa-Eisner E, Gileadi E (1970) J Electroanal Chem 25:481

    Article  CAS  Google Scholar 

  150. Burrows B, Jasinski R (1968) J Electrochem Soc 115:365

    Article  CAS  Google Scholar 

  151. Aurbach D, Daroux ML, Foguy PW, Yeager E (1987) J Electrochem Soc 134:1611

    Article  CAS  Google Scholar 

  152. Piljac I, Iwamoto RT (1969) J Electroanal Chem 23:484

    Article  CAS  Google Scholar 

  153. Baucke FGK, Tobias CW (1969) J Electrochem Soc 116:34

    Article  Google Scholar 

  154. Sutzkover E, Nemirovsky Y, Ariel M (1972) J Electroanal Chem 38:107

    Article  CAS  Google Scholar 

  155. Courtot-Coupez J, L’Her M (1970) Bull Soc Chim Fr 1970:1631

    Google Scholar 

  156. Boden DP, Mukherjee LM (1973) Electrochim Acta 18:781

    Article  CAS  Google Scholar 

  157. Cisak A, Elving PJ (1963) J Electrochem Soc 110:160

    Article  CAS  Google Scholar 

  158. Bertocci U (1957) Z Elektrochem 61:431

    CAS  Google Scholar 

  159. Bertocci U (1957) Z Elektrochem 61:434

    CAS  Google Scholar 

  160. Mukherjee LM (1972) J Phys Chem 76:243

    Article  CAS  Google Scholar 

  161. Mukherjee LM, Kelly JJ, Richards M, Lukacs JM Jr (1969) J Phys Chem 73:580; [101]

    Google Scholar 

  162. Mukherjee LM, Kelly JJ (1967) J Phys Chem 71:2348

    Article  CAS  Google Scholar 

  163. Mukherjee LM, Kelly JJ, Baranetzky W, Sica J (1968) J Phys Chem 72:3410

    Article  CAS  Google Scholar 

  164. Broadhead J, Elving PJ (1969) Anal Chim Acta 48:433

    Article  CAS  Google Scholar 

  165. Desbarres J, Pichet P, Benoit RL (1968) Electrochim Acta 13:1899

    Article  CAS  Google Scholar 

  166. Benoit RL, Pichet P (1973) J Electroanal Chem 43:59

    Article  CAS  Google Scholar 

  167. Coetzee JF, Simon JM, Bertozzi RJ (1969) Anal Chem 41:766

    Article  CAS  Google Scholar 

  168. Armstrong NR, Quinn RK, Vanderborgh NE (1974) Anal Chem 46:1759

    Article  CAS  Google Scholar 

  169. Headridge JB, Pletcher D, Callingham M (1967) J Chem Soc A 1967:684

    Article  Google Scholar 

  170. Badoz-Lambling J, Sato M (1962) Acta Chim Hung 32:191

    CAS  Google Scholar 

  171. Perichon J, Buvet R (1964) Electrochim Acta 9:587

    Article  CAS  Google Scholar 

  172. Markle RJ, Lagowski JJ (1986) Organometallics 5:595

    Article  CAS  Google Scholar 

  173. Yamin H, Penciner J, Gorenshtain A, Elam M, Peled E (1985) J Power Sources 14:129

    Article  CAS  Google Scholar 

  174. Yamin H, Gorenshtein A, Penciner J, Sternberg Y, Peled E (1988) J Electrochem Soc 135:1045

    Article  CAS  Google Scholar 

  175. Paddon CA, Compton RG (2005) Electroanalysis 17:1919

    Article  CAS  Google Scholar 

  176. Culp SL, Caruso JA (1969) Anal Chem 41:1329

    Article  CAS  Google Scholar 

  177. Izutsu K (2009) Electrochemistry in Nonaqueous Solutions, 2nd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  178. Izutsu K, Kolthoff IM, Fujinaga T, Hattori M, Chantooni MK Jr (1977) Anal Chem 49:503

    Article  CAS  Google Scholar 

  179. Pastoriza-Santos I, Liz-Marzán LM (2000) Pure Appl Chem 72:83

    Article  CAS  Google Scholar 

  180. Benedetti AV, Fugivara CS, Cilense M, Rabockai T (1983) Anal Lett 16:1357

    Article  CAS  Google Scholar 

  181. Zeyer C, Grüniger HR, Dossenbach O (1992) J Appl Electrochem 22:304

    Article  CAS  Google Scholar 

  182. Cox BG, Firman P, Horst H, Schneider H (1983) Polyhedron 2:343

    Article  CAS  Google Scholar 

  183. Luehrs DC, Iwamoto RT, Kleinberg J (1966) Inorg Chem 5:201

    Article  CAS  Google Scholar 

  184. For reviews, see Ahrland S (1990) Pure Appl Chem 62:2077 and [184]

    Google Scholar 

  185. Arland S (1978) In: Lagowski JJ (ed) Chemistry of nonaqueous solvents, vol VA. Academic, New York, Chapter 1

    Google Scholar 

  186. Persson H (1970) Acta Chem Scand 24:3739

    Article  Google Scholar 

  187. Sato M, Yamada T, Nishimura A (1980) Chem Lett 1980:925

    Article  Google Scholar 

  188. Zotti G, Schiavon G, Zecchin S, Favretto D (1998) J Electroanal Chem 456:217

    Article  CAS  Google Scholar 

  189. Zara AJ, Machado SS, Bulhoes LOS, Benedetti AV, Rabockai T (1987) J Electroanal Chem 221:165

    Article  CAS  Google Scholar 

  190. Gritzner G, Kuta J (1984) Pure Appl Chem 56:461

    Article  Google Scholar 

  191. Peerce PJ, Bard AJ (1980) J Electroanal Chem 108:121

    Article  CAS  Google Scholar 

  192. Kannuck RM, Bellama JM, Blubaugh EA, Durst RA (1987) Anal Chem 59:1473

    Article  CAS  Google Scholar 

  193. Ghilane J, Hapiot P, Bard AJ (2006) Anal Chem 78:6868

    Article  CAS  Google Scholar 

  194. Noviandri I, Brown KN, Fleming DS, Gulyas PT, Lay PA, Masters AF, Phillips L (1999) J Phys Chem B 103:6713

    Article  CAS  Google Scholar 

  195. Nelson IV, Iwamoto RT (1964) J Electroanal Chem 7:218

    CAS  Google Scholar 

  196. Desbarres J (1961) Bull Soc Chim Fr 1961:502

    Google Scholar 

  197. Popov AI, Geske DH (1958) J Am Chem Soc 80:1340

    Article  CAS  Google Scholar 

  198. Sinicki C (1966) Bull Soc Chim Fr 1966:194

    Google Scholar 

  199. Giordano MC, Bazán JC, Arvía AJ (1966) Electrochim Acta 11:1553

    Article  CAS  Google Scholar 

  200. Voorhies JD, Schurdak EJ (1962) Anal Chem 34:939

    Article  CAS  Google Scholar 

  201. Lopez B, Iwasita T, Giordano MC (1973) J Electroanal Chem 47:469

    Article  CAS  Google Scholar 

  202. Behl WK, Chin DT (1988) I Electrochem Soc 135:16

    Article  CAS  Google Scholar 

  203. Benoit RL, Guay M, Oesbarres J (1968) Can J Chem 46:1261

    Article  CAS  Google Scholar 

  204. Benoit RL (1968) Inorg Nucl Chem Lett 4:723

    Article  CAS  Google Scholar 

  205. Badoz-Lambling J, Cauquis G (1974) Analytical aspects of voltammetry in non-aqueous solvents and melts. In: Nürnberg HW (ed) Electroanalytical chemistry. Wiley, New York, p 386

    Google Scholar 

  206. Diggle JW, Parker AJ (1974) Aust J Chem 27:1617

    Article  CAS  Google Scholar 

  207. Pavlishchuk VV, Addison AW (2000) Inorg Chim Acta 298:97

    Article  CAS  Google Scholar 

  208. Kolthoff IM (1965) J Polarogr Soc 10:22 and [24]

    Google Scholar 

  209. Coetzee JF, Campion JJ (1967) J Am Chem Soc 89:2513, 2517

    Google Scholar 

  210. Kotočová A (1980) Chem Zvesti 34:56

    Google Scholar 

  211. Krishtalik LI, Alpatova NM, Ovsyannikova EV (1991) Electrochim Acta 36:435

    Article  CAS  Google Scholar 

  212. Bunakova LV, Khanova LA, Topolev VV, Krishtalik LI (2004) J New Mater Electrochem Syst 7:241

    CAS  Google Scholar 

  213. Alfenaar M, De Ligny CL, Remijnse AG (1967) Recl Trav Chim Pay-Bas 86:986

    Article  CAS  Google Scholar 

  214. Cox BG, Parker AJ, Waghorne WE (1973) J Am Chem Soc 95:1010

    Article  CAS  Google Scholar 

  215. Murray RC Jr, Aikens DA (1976) Electrochim Acta 21:1045

    Article  CAS  Google Scholar 

  216. Senanayake G, Muir DM (1987) J Electroanal Chem 237:149

    Article  CAS  Google Scholar 

  217. Kahanda C, Popovych O (1994) Aust J Chem 47:921 and references therein

    Google Scholar 

  218. Izutsu K, Nakamura T, Yamashita T (1987) J Electroanal Chem 225:255

    Article  CAS  Google Scholar 

  219. Izutsu K, Nakamura T, Muramatsu M, Aoki Y (1991) J Electroanal Chem 297:49

    Google Scholar 

  220. Izutsu K, Nakamura T, Aoki Y (1992) J Electroanal Chem 334:213

    Article  CAS  Google Scholar 

  221. Izutsu K, Muramatsu M, Aoki Y (1992) J Electroanal Chem 338:125

    Article  CAS  Google Scholar 

  222. Izutsu K, Arai T, Hayashijima T (1997) J Electroanal Chem 426:91

    Article  CAS  Google Scholar 

  223. Izutsu K, Kobayashi N (2005) J Electroanal Chem 574:197

    Article  CAS  Google Scholar 

  224. Izutsu K (2005) Rev Polarogr 51:73 (in Japanese)

    Article  Google Scholar 

  225. Izutsu K, Nakamura T, Takeuchi I, Karasawa N (1983) J Electroanal Chem 144:391

    Article  CAS  Google Scholar 

  226. Izutsu K, Nakamura T, Muramatsu M (1990) J Electroanal Chem 283:435

    Article  CAS  Google Scholar 

  227. Izutsu K, Gozawa N (1984) J Electroanal Chem 171:373

    Article  CAS  Google Scholar 

  228. Izutsu K, Nakamura T, Gozawa N (1984) J Electroanal Chem 178:165

    Article  CAS  Google Scholar 

  229. Izutsu K, Nakamura T, Gozawa N (1984) J Electroanal Chem 178:171

    Article  CAS  Google Scholar 

  230. Izutsu K (2008) Bull Chem Soc Jpn 81:703

    Article  CAS  Google Scholar 

  231. Izutsu K (2010) Bull Chem Soc Jpn 83:39

    Article  CAS  Google Scholar 

  232. Izutsu K (2010) Bull Chem Soc Jpn 83:777

    Article  CAS  Google Scholar 

  233. Izutsu K, Nakamura T, Muramatsu M, Aoki Y (1991) Anal Sci 7(suppl):1411

    Article  CAS  Google Scholar 

  234. Izutsu K, Nakamura T, Arai T, Ohmaki M (1995) Electroanalysis 7:884

    Article  CAS  Google Scholar 

  235. Izutsu K (2011) Anal Sci 27:685

    Article  CAS  Google Scholar 

  236. Alexander R, Parker AJ, Sharp JH, Waghorne WE (1972) J Am Chem Soc 94:1148

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kosuke Izutsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Izutsu, K. (2013). Reference Electrodes for Use in Nonaqueous Solutions. In: Inzelt, G., Lewenstam, A., Scholz, F. (eds) Handbook of Reference Electrodes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36188-3_6

Download citation

Publish with us

Policies and ethics