Skip to main content

The Kelvin Probe Technique as Reference Electrode for Application on Thin and Ultrathin Electrolyte Films

  • Chapter
  • First Online:
Handbook of Reference Electrodes
  • 8050 Accesses

Abstract

The Kelvin probe technique is a unique reference electrode that allows non-contact measurement of electrode potentials. It can be used for measuring electrode potentials through insulating dielectric media such as air or polymeric films. It is mainly used where standard electrochemical techniques, which require a finite ionic resistance between working and reference electrodes, will fail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomson W (1898) Philos Mag 46:82

    Google Scholar 

  2. Patai IF, Pomerantz MA (1951) J Franklin Inst 252:239

    Article  Google Scholar 

  3. Zisman WA (1932) Rev Sci Instrum 3:367

    Article  Google Scholar 

  4. Rohwerder M, Benndorf C (1993) Surf Sci 307–309:789

    Google Scholar 

  5. Stratmann M, Kim KT, Streckel H (1990) Z Metallkunde 81:715

    CAS  Google Scholar 

  6. Yee S, Stratmann M, Oriani RA (1991) J Electrochem Soc 138:55

    Article  CAS  Google Scholar 

  7. Stratmann M, Streckel H (1990) Corr Sci 30:681

    Article  CAS  Google Scholar 

  8. Stratmann M, Streckel H (1990) Corr Sci 30:697

    Article  CAS  Google Scholar 

  9. Stratmann M, Streckel H, Kim KT, Crockett S (1990) Corr Sci 30:715

    Article  CAS  Google Scholar 

  10. Leng A, Stratmann M (1993) Corr Sci 34:1657

    Article  CAS  Google Scholar 

  11. Stratmann M (1992) Bull Electrochem 8:30

    CAS  Google Scholar 

  12. Leng A, Streckel H, Stratmann M (1999) Corr Sci 41:547

    Article  CAS  Google Scholar 

  13. Leng A, Streckel H, Stratmann M (1999) Corr Sci 41:579

    Article  CAS  Google Scholar 

  14. Leng A, Streckel H, Hofmann K, Stratmann M (1999) Corr Sci 41:599

    Article  CAS  Google Scholar 

  15. Veselovsky VJ (1939) Acta Physicochim URSS 11:815

    Google Scholar 

  16. Grahame DC (1947) Chem Revs 41:441

    Article  CAS  Google Scholar 

  17. Frumkin AN (1930) Colloid Symposium Annual 7: 89

    Google Scholar 

  18. Bockris JOM, Argade SD (1968) J Chem Phys 49:5133

    Article  CAS  Google Scholar 

  19. Bockris JOM (1970) Energ Conv 10:41

    Article  CAS  Google Scholar 

  20. Bockris JOM (1972) J Electroanal Chem 36:495

    Article  CAS  Google Scholar 

  21. Gileadi E, Stoner G (1972) J Electronal Chem 36:492

    Article  CAS  Google Scholar 

  22. Trasatti S, Damaskin B (1974) J Electroanal Chem 52:313

    Article  CAS  Google Scholar 

  23. Trasatti S (1975) J Electroanal Chem 66:155

    Article  CAS  Google Scholar 

  24. De Battisti A, Trasatti S (1977) J Electroanal Chem 79:251

    Article  Google Scholar 

  25. Trasatti S (1982) J Electroanal Chem 139:1

    Article  CAS  Google Scholar 

  26. Trasatti S (1990) Electrochim Acta 3:269

    Article  Google Scholar 

  27. Trasatti S (1991) Electrochim Acta 36:1659

    Article  CAS  Google Scholar 

  28. Trasatti S (1995) Surf Sci 335:1

    Article  CAS  Google Scholar 

  29. Rohwerder M, Turcu F (2007) Electrochim Acta 53:290

    Article  CAS  Google Scholar 

  30. Frankel GS, Stratmann M, Rohwerder M, Michalik A, Maier B, Doora J, Wicinski M (2007) Corr Sci 49:2021

    Article  CAS  Google Scholar 

  31. Ehahoun H, Stratmann M, Rohwerder M (2005) Electrochim Acta 50:2667

    Article  CAS  Google Scholar 

  32. Jörissen J, Turek T, Weber R (2011) Chem unserer Zeit 5:172

    Article  Google Scholar 

  33. Hausbrand R, Stratmann M, Rohwerder M (2008) J Electrochem Soc 155:C369

    Article  CAS  Google Scholar 

  34. Rohwerder M, Hornung E, Stratmann M (2003) Electrochim Acta 48:1235

    Article  CAS  Google Scholar 

  35. Senöz S, Rohwerder M (2011) Electrochim Acta 56:9588

    Article  Google Scholar 

  36. Senöz S, Maljusch A, Rohwerder M, Schuhmann W (2012) Electroanalysis 24:239

    Article  Google Scholar 

  37. Senöz S, Evers S, Stratmann M, Rohwerder M (2011) Electrochem Commun 13:1542

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Rohwerder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rohwerder, M. (2013). The Kelvin Probe Technique as Reference Electrode for Application on Thin and Ultrathin Electrolyte Films. In: Inzelt, G., Lewenstam, A., Scholz, F. (eds) Handbook of Reference Electrodes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36188-3_15

Download citation

Publish with us

Policies and ethics