Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7606))

Abstract

Synchronizers play a key role in multi-clock domain systems on chip. Designing reliable synchronizers requires estimating and evaluating synchronizer parameters τ (resolution time constant) and T w (metastability window). Typically, evaluation of these parameters has been done by empirical rules of thumb or simple circuit simulations to ensure that the synchronizer MTBF is sufficiently long. This paper shows that those rules of thumb and some common simulation method are unable to predict correct synchronizer parameters in deep sub-micron technologies. We propose an extended simulation method to estimate synchronizer characteristics more reliably and compare the results obtained with other state-of-the-art simulation methods and with measurements of a 65nm LP CMOS test-chip.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kleeman, L., Cantoni, A.: Metastable behavior in Digital Systems. IEEE D&T 4(6), 4–19 (1987)

    Google Scholar 

  2. Dike, C., Burton, E.: Miller and noise effects in synchronizing flip-flop. JSSC 34(6), 849–855 (1999)

    Google Scholar 

  3. Beer, S., Ginosar, R., Priel, M., Dobkin, R., Kolodny, A.: The Devolution of Synchronizers. In: ASYNC 2010 (2010)

    Google Scholar 

  4. Chen, D., Singh, D., et al.: A comprehensive approach to modeling, characterizing and optimizing for metastability in FPGAs. In: FPGA 2010 (2010)

    Google Scholar 

  5. Zhou, J., Kinniment, D., Russell, G., Yakovlev, A.: Adapting synchronizers to the effects of on chip variability. In: ASYNC 2008 (2008)

    Google Scholar 

  6. Cox, J., Engel, G.L.: Metastability and Fatal System Errors. Blendics LLC (2010), http://www.blendics.com

  7. Kinniment, D.: Synchronization and Arbitration in Digital Systems. Wiley (2007)

    Google Scholar 

  8. Yang, S., Greenstreet, M.: Computing synchronizer failure probabilities. In: DATE 2007 (2007)

    Google Scholar 

  9. Jones, I.W., Yang, S., Greenstreet, M.: Synchronizer Behavior and Analysis. In: ASYNC 2009 (2009)

    Google Scholar 

  10. Cox, J., Chaney, T., Zar, D.: Simulating the behavior of Synchronizers, white paper, http://www.blendics.com

  11. Beer, S., et al.: An on-chip metastability measurement circuit to characterize synchronization behavior in 65nm. In: ISCAS (May 2011)

    Google Scholar 

  12. Kawaguchi, H., Sakurai, T.: A reduced clock-swing flip-flop (RCSFF) for 63% power reduction. IEEE J. Solid-State Circuits (May 1998)

    Google Scholar 

  13. Levacq, D., Yazid, M., et al.: Half VDD Clock-Swing Flip-Flop with Reduced Contention for up to 60% Power Saving in Clock Distribution. In: ESSCIRC (September 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beer, S., Ginosar, R. (2013). An Extended Metastability Simulation Method for Synchronizer Characterization. In: Ayala, J.L., Shang, D., Yakovlev, A. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2012. Lecture Notes in Computer Science, vol 7606. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36157-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36157-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36156-2

  • Online ISBN: 978-3-642-36157-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics