Skip to main content

Evolution of Cell Adhesion to Extracellular Matrix

  • Chapter
  • First Online:
Evolution of Extracellular Matrix

Abstract

The extracellular matrix and cell adhesion receptors, especially the integrins, have played a major role in the emergence of multicellular animals. The members of the integrin family can be found in all present-day metazoans, and they actually predate the origin of the animal kingdom. Chordate integrins show structural and functional diversity, and they gather around themselves a large number of adaptor and signaling proteins, an adhesome. This chapter reviews the early evolution of integrin-type protein domains, the origin of integrin-dependent adhesion mechanisms, and the later developments in chordate-specific integrins.

Please note the Erratum to this chapter at the end of the book

An erratum to this chapter is available at http://dx.doi.org/978-3-642-36002-2_10

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-642-36002-2_10

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamska M, Degnan BM, Green K, Zwafink C (2011) What sponges can tell us about the evolution of developmental processes. Zoology (Jena) 114:1–10

    Google Scholar 

  • Adindla S, Inampudi KK, Guruprasad L (2007) Cell surface proteins in archaeal and bacterial genomes comprising “LVIVD”, “RIVW” and “LGxL” tandem sequence repeats are predicted to fold as β-propeller. Int J Biol Macromol 41:454–468

    CAS  PubMed  Google Scholar 

  • Alonso JL, Essafi M, Xiong JP, Stehle T, Arnaout MA (2002) Does the integrin alphaA domain act as a ligand for its betaA domain? Curr Biol 12:R340–R342

    CAS  PubMed  Google Scholar 

  • Alonso-García N, Inglés-Prieto A, Sonnenberg A, de Pereda JM (2009) Structure of the Calx-beta domain of the integrin beta4 subunit: insights into function and cation-independent stability. Acta Crystallogr D Biol Crystallogr 65:858–871

    PubMed  Google Scholar 

  • Anthis NJ, Wegener KL, Ye F, Kim C, Goult BT, Lowe ED, Vakonakis I, Bate N, Critchley DR, Ginsberg MH, Campbell ID (2009) The structure of an integrin/talin complex reveals the basis of inside-out signal transduction. EMBO J 28:3623–3632

    CAS  PubMed  Google Scholar 

  • Aquilina A, Korda M, Bergelson JM, Humphries MJ, Farndale RW, Tuckwell D (2002) A novel gain-of-function mutation of the integrin alpha2 VWFA domain. Eur J Biochem 269:1136–1144

    CAS  PubMed  Google Scholar 

  • Arnaout MA, Goodman SL, Xiong JP (2007) Structure and mechanics of integrin-based cell adhesion. Curr Opin Cell Biol 19:495–507

    CAS  PubMed  Google Scholar 

  • Bader BL, Rayburn H, Crowley D, Hynes RO (1998) Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all αv integrins. Cell 95:507–519

    CAS  PubMed  Google Scholar 

  • Baldwin ET, Sarver RW, Bryant GL Jr, Curry KA, Fairbanks MB, Finzel BC, Garlick RL, Heinrikson RL, Horton NC, Kelley LL, Mildner AM, Moon JB, Mott JE, Mutchler VT, Tomich CS, Watenpaugh KD, Wiley VH (1998) Cation binding to the integrin CD11b I domain and activation model assessment. Structure 6:923–935

    CAS  PubMed  Google Scholar 

  • Barton SJ, Travis MA, Askari JA, Buckley PA, Craig SE, Humphries MJ, Mould AP (2004) Novel activating and inactivating mutations in the integrin beta1 subunit A domain. Biochem J 380:401–407

    CAS  PubMed  Google Scholar 

  • Bazigou E, Xie S, Chen C, Weston A, Miura N, Sorokin L, Adams R, Muro AF, Sheppard D, Makinen T (2009) Integrin-α9 is required for fibronectin matrix assembly during lymphatic valve morphogenesis. Dev Cell 17:175–186

    CAS  PubMed  Google Scholar 

  • Beglova N, Blacklow SC, Takagi J, Springer TA (2002) Cysteine-rich module structure reveals a fulcrum for integrin rearrangement upon activation. Nat Struct Biol 9:282–287

    CAS  PubMed  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    CAS  PubMed  Google Scholar 

  • Bhunia A, Tang XY, Mohanram H, Tan SM, Bhattacharjya S (2009) NMR solution conformations and interactions of integrin alphaLbeta2 cytoplasmic tails. J Biol Chem 284:3873–3884

    CAS  PubMed  Google Scholar 

  • Bökel C, Brown NH (2002) Integrins in development: moving on, responding to, and sticking to the extracellular matrix. Dev Cell 3:311–321

    PubMed  Google Scholar 

  • Bork P, Holm L, Sander C (1994) The immunoglobulin fold. Structural classification, sequence patterns and common core. J Mol Biol 242:309–320

    CAS  PubMed  Google Scholar 

  • Bouvard D, Brakebusch C, Gustafsson E, Aszódi A, Bengtsson T, Berna A, Fässler R (2001) Functional consequences of integrin gene mutations in mice. Circ Res 89:211–223

    CAS  PubMed  Google Scholar 

  • Brower DL, Brower SM, Hayward DC, Ball EE (1997) Molecular evolution of integrins: genes encoding integrin β subunits from a coral and a sponge. Proc Natl Acad Sci USA 94:9182–9187

    CAS  PubMed  Google Scholar 

  • Burke RD (1999) Invertebrate integrins: structure, function and evolution. Int Rev Cytol 191:257–284

    CAS  PubMed  Google Scholar 

  • Chaudhuri I, Söding J, Lupas AN (2008) Evolution of the β-propeller fold. Proteins 71:795–803

    CAS  PubMed  Google Scholar 

  • Chouhan B, Denesyuk A, Heino J, Johnson MS, Denessiouk K (2011) Conservation of the human integrin-type β-propeller domain in bacteria. PLoS One 6:e25069

    CAS  PubMed  Google Scholar 

  • Chouhan B, Denesyuk A, Heino J, Johnson M, Denessiouk K (2012) Evolutionary origin of the alpha C helix in integrins. WASET 65:546–549

    Google Scholar 

  • Chouhan B, Denesyuk A, Heino J, Johnson M, Denessiouk K (2012) Evolutionary origin of the alpha C helix in integrins. WASET 65:546–549

    Google Scholar 

  • Chua GL, Tang XY, Amalraj M, Tan SM, Bhattacharjya S (2011) Structures and interaction analyses of integrin αMβ2 cytoplasmic tails. J Biol Chem 286:43842–43854

    CAS  PubMed  Google Scholar 

  • Clark LA, Boriack-Sjodin PA, Eldredge J, Fitch C, Friedman B, Hanf KJ, Jarpe M, Liparoto SF, Li Y, Lugovskoy A, Miller S, Rushe M, Sherman W, Simon K, Van Vlijmen H (2006) Affinity enhancement of an in vivo matured therapeutic antibody using structure-based computational design. Protein Sci 15:949–960

    CAS  PubMed  Google Scholar 

  • Colombatti A, Bonaldo P (1991) The superfamily of proteins with von Willebrand factor type A-like domains: one theme common to components of extracellular matrix, hemostasis, cellular adhesion, and defense mechanisms. Blood 77:2305–2315

    CAS  PubMed  Google Scholar 

  • Colombatti A, Bonaldo P, Doliana R (1993) Type A modules: interacting domains found in several non-fibrillar collagens and in other extracellular matrix proteins. Matrix 13:297–306

    CAS  PubMed  Google Scholar 

  • Corbi AL, Miller LJ, O’Connor K, Larson RS, Springer TA (1987) cDNA cloning and complete primary structure of the α subunit of a leukocyte adhesion glycoprotein, p150,95. EMBO J 6:4023–4028

    CAS  PubMed  Google Scholar 

  • Cox EA, Tuskey C, Hardin J (2004) Cell adhesion receptors in C. elegans. J Cell Sci 117:1867–1870

    CAS  PubMed  Google Scholar 

  • Crump MP, Ceska TA, Spyracopoulos L, Henry A, Archibald SC, Alexander R, Taylor RJ, Findlow SC, O’Connell J, Robinson MK, Shock A (2004) Structure of an allosteric inhibitor of LFA-1 bound to the I-domain studied by crystallography, NMR, and calorimetry. Biochemistry 43:2394–2404

    CAS  PubMed  Google Scholar 

  • Deshmukh L, Gorbatyuk V, Vinogradova O (2010) Integrin {beta}3 phosphorylation dictates its complex with the Shc phosphotyrosine-binding (PTB) domain. J Biol Chem 285:34875–34884

    CAS  PubMed  Google Scholar 

  • Deshmukh L, Meller N, Alder N, Byzova T, Vinogradova O (2011) Tyrosine phosphorylation as a conformational switch: a case study of integrin β3 cytoplasmic tail. J Biol Chem 286:40943–40953

    CAS  PubMed  Google Scholar 

  • Dodd DS, Sheriff S, Chang CJ, Stetsko DK, Phillips LM, Zhang Y, Launay M, Potin D, Vaccaro W, Poss MA, McKinnon M, Barrish JC, Suchard SJ, Murali Dhar TG (2007) Design of LFA-1 antagonists based on a 2,3-dihydro-1H-pyrrolizin-5(7aH)-one scaffold. Bioorg Med Chem Lett 17:1908–1911

    CAS  PubMed  Google Scholar 

  • de Pereda JM, Wiche G, Liddington RC (1999) Crystal structure of a tandem pair of fibronectin type III domains from the cytoplasmic tail of integrin alpha6beta4. EMBO J 18:4087–4095

    PubMed  Google Scholar 

  • de Pereda JM, Lillo MP, Sonnenberg A (2009) Structural basis of the interaction between integrin alpha6beta4 and plectin at the hemidesmosomes. EMBO J 28:1180–1190

    PubMed  Google Scholar 

  • Emsley J, King SL, Bergelson JM, Liddington RC (1997) Crystal structure of the I domain from integrin alpha2beta1. J Biol Chem 272:28512–28517

    CAS  PubMed  Google Scholar 

  • Emsley J, Knight CG, Farndale RW, Barnes MJ, Liddington RC (2000) Structural basis of collagen recognition by integrin alpha2beta1. Cell 101:47–56

    CAS  PubMed  Google Scholar 

  • Evans R, Patzak I, Svensson L, De Filippo K, Jones K, McDowall A, Hogg N (2009) Integrins in immunity. J Cell Sci 122:215–225

    CAS  PubMed  Google Scholar 

  • Ewan R, Huxley-Jones J, Mould AP, Humphries MJ, Robertson DL, Boot-Handford RP (2005) The integrins of the urochordate Ciona intestinalis provide novel insights into the molecular evolution of the vertebrate integrin family. BMC Evol Biol 5:31

    PubMed  Google Scholar 

  • García-Alvarez B, de Pereda JM, Calderwood DA, Ulmer TS, Critchley D, Campbell ID, Ginsberg MH, Liddington RC (2003) Structural determinants of integrin recognition by talin. Mol Cell 11:49–58

    PubMed  Google Scholar 

  • George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO (1993) Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119:1079–1091

    CAS  PubMed  Google Scholar 

  • Gottschalk KE (2005) A coiled-coil structure of the alphaIIbbeta3 integrin transmembrane and cytoplasmic domains in its resting state. Structure 13:703–712

    CAS  PubMed  Google Scholar 

  • Guckian KM, Lin EY, Silvian L, Friedman JE, Chin D, Scott DM (2008) Design and synthesis of a series of meta aniline-based LFA-1 ICAM inhibitors. Bioorg Med Chem Lett 18:5249–5251

    CAS  PubMed  Google Scholar 

  • Gupta V, Gylling A, Alonso JL, Sugimori T, Ianakiev P, Xiong JP, Arnaout MA (2007) The b-tail domain (βTD) regulates physiologic ligand binding to integrin CD11β/CD18. Blood 109:3513–3520

    CAS  PubMed  Google Scholar 

  • Halaby DM, Poupon A, Mornon J-P (1999) The immunoglobulin fold family: sequence analysis and 3D structure comparisons. Protein Eng 12:563–571

    CAS  PubMed  Google Scholar 

  • Han C, Wang D, Soba P, Zhu S, Lin X, Jan LY, Jan YN (2012) Integrins regulate repulsion-mediated dendritic patterning of drosophila sensory neurons by restricting dendrites in a 2D space. Neuron 73:64–78

    CAS  PubMed  Google Scholar 

  • Heino J, Huhtala M, Käpylä J, Johnson MS (2009) Evolution of collagen-based adhesion systems. Int J Biochem Cell Biol 41:341–348

    CAS  PubMed  Google Scholar 

  • Hodivala-Dilke KM, McHugh KP, Tsakiris DA, Rayburn H, Crowley D, Ullman-Culleré M, Ross FP, Coller BS, Teitelbaum S, Hynes RO (1999) B3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J Clin Invest 103:229–238

    CAS  PubMed  Google Scholar 

  • Horii K, Okuda D, Morita T, Mizuno H (2004) Crystal structure of EMS16 in complex with the integrin alpha2-I domain. J Mol Biol 6:519–527

    Google Scholar 

  • Huang H, Vogel HJ (2012) Structural basis for the activation of platelet integrin αIIbβ3 by calcium- and integrin-binding protein 1. J Am Chem Soc 134:3864–3872

    CAS  PubMed  Google Scholar 

  • Hughes AL (1992) Coevolution of the vertebrate integrin α- and β-chain genes. J Mol Evol 9:216–234

    CAS  Google Scholar 

  • Hughes AL (2001) Evolution of the integrin alpha and beta protein families. J Mol Evol 52:63–72

    CAS  PubMed  Google Scholar 

  • Hughes PE, Diaz-Gonzalez F, Leong L, Wu C, McDonald JA, Shattil SJ, Ginsberg MH (1996) Breaking the integrin hinge. A defined structural constraint regulates integrin signaling. J Biol Chem 271:6571–6574

    CAS  PubMed  Google Scholar 

  • Huhtala M, Heino J, Casciari D, de Luise A, Johnson MS (2005) Integrin evolution: insights from ascidian and teleost fish genomes. Matrix Biol 24:83–95

    CAS  PubMed  Google Scholar 

  • Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    CAS  PubMed  Google Scholar 

  • Ivaska J, Käpylä J, Pentikäinen O, Hoffrén A-M, Hermonen J, Huttunen P, Johnson MS, Heino J (1999) A peptide inhibiting the collagen binding function of integrin α2I domain. J Biol Chem 274:3513–3521

    CAS  PubMed  Google Scholar 

  • Ivaska J, Heino J (2011) Cooperation between integrins and growth factor receptors in signaling and endocytosis. Annu Rev Cell Dev Biol 27:291–320

    CAS  PubMed  Google Scholar 

  • Jannuzi AL, Bunch TA, West RF, Brower DL (2004) Identification of integrin beta subunit mutations that alter heterodimer function in situ. Mol Biol Cell 15:3829–3840

    CAS  PubMed  Google Scholar 

  • Jenkins C, Kedar V, Fuerst JA (2002) Gene discovery within the planctomycete division of the domain Bacteria using sequence tags from genomic DNA libraries. Genome Biol 3:research0031–research0031.11

    PubMed  Google Scholar 

  • Jin M, Andricioaei I, Springer TA (2004) Conversion between three conformational states of integrin I domains with a C-terminal pull spring studied with molecular dynamics. Structure 12:2137–2147

    CAS  PubMed  Google Scholar 

  • Johnson MS, Tuckwell D (2003) Evolution of Integrin I-domains. In: Gullberg D (ed) I domains in integrins. Landes Bioscience, Georgetown, TX, pp 1–26

    Google Scholar 

  • Johnson MS, Lu N, Denessiouk K, Heino J, Gullberg D (2009) Integrins during evolution: evolutionary trees and model organisms. Biochim Biophys Acta 1788:779–789

    CAS  PubMed  Google Scholar 

  • Jokinen J, White DJ, Salmela M, Huhtala M, Käpylä J, Sipilä K, Puranen JS, Nissinen L, Kankaanpää P, Marjomäki V, Hyypiä T, Johnson MS, Heino J (2010) Molecular mechanism of alpha2beta1 integrin interaction with human echovirus 1. EMBO J 29:196–208

    CAS  PubMed  Google Scholar 

  • Kallen J, Welzenbach K, Ramage P, Geyl D, Kriwacki R, Legge G, Cottens S, Weitz-Schmidt G, Hommel U (1999) Structural basis for LFA-1 inhibition upon lovastatin binding to the CD11a I-domain. J Mol Biol 292:1–9

    CAS  PubMed  Google Scholar 

  • Kanchanawong P, Shtengel G, Pasapera AM, Ramko EB, Davidson MW, Hess HF, Waterman CM (2010) Nanoscale architecture of integrin-based cell adhesions. Nature 468:580–584

    CAS  PubMed  Google Scholar 

  • Karpusas M, Ferrant J, Weinreb PH, Carmillo A, Taylor FR, Garber EA (2003) Crystal structure of the alpha1beta1 integrin I domain in complex with an antibody Fab fragment. J Mol Biol 327:1031–1041

    CAS  PubMed  Google Scholar 

  • Katagiri K, Maeda A, Shimonaka M, Kinashi T (2003) RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1. Nat Immunol 4:741–748

    CAS  PubMed  Google Scholar 

  • Kiema T, Lad Y, Jiang P, Oxley CL, Baldassarre M, Wegener KL, Campbell ID, Ylänne J, Calderwood DA (2006) The molecular basis of filamin binding to integrins and competition with talin. Mol Cell 21:337–347

    CAS  PubMed  Google Scholar 

  • Kim M, Carman CV, Springer TA (2003) Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science 301:1720–1725

    CAS  PubMed  Google Scholar 

  • Kim C, Ye F, Ginsberg MH (2011) Regulation of integrin activation. Annu Rev Cell Dev Biol 27:321–345

    CAS  PubMed  Google Scholar 

  • Kim C, Schmidt T, Cho EG, Ye F, Ulmer TS, Ginsberg MH (2012) Basic amino-acid side chains regulate transmembrane integrin signalling. Nature 481(7380):209–213

    PubMed  Google Scholar 

  • Kim ME, Shrestha BR, Blazeski R, Mason CA, Grueber WB (2012) Integrins establish dendrite-substrate relationships that promote dendritic self-avoidance and patterning in drosophila sensory neurons. Neuron 73:79–91

    CAS  PubMed  Google Scholar 

  • King N, Westbrook MJ, Young SL, Kuo A, Abedin M, Chapman J, Fairclough S, Hellsten U, Isogai Y, Letunic I, Marr M, Pincus D, Putnam N, Rokas A, Wright KJ, Zuzow R, Dirks W, Good M, Goodstein D, Lemons D, Li W, Lyons JB, Morris A, Nichols S, Richter DJ, Salamov A, Sequencing JG, Bork P, Lim WA, Manning G, Miller WT, McGinnis W, Shapiro H, Tjian R, Grigoriev IV, Rokhsar D (2008) The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451:783–788

    CAS  PubMed  Google Scholar 

  • Knack BA, Iguchi A, Shinzato C, Hayward DC, Ball EE, Miller DJ (2008) Unexpected diversity of cnidarian integrins: expression during coral gastrulation. BMC Evol Biol 8:136

    PubMed  Google Scholar 

  • Kreidberg JA, Donovan MJ, Goldstein SL, Rennke H, Shepherd K, Jones RC, Jaenisch R (1996) α3β1 integrin has a crucial role in kidney and lung organogenesis. Development 122:3537–3547

    CAS  PubMed  Google Scholar 

  • Lahti M, Bligt E, Niskanen H, Parkash V, Brandt AM, Jokinen J, Patrikainen P, Käpylä J, Heino J, Salminen TA (2011) Structure of collagen receptor integrin α1I domain carrying the activating mutation E317A. J Biol Chem 286:43343–43351

    CAS  PubMed  Google Scholar 

  • Larson RS, Corbi AL, Berman L, Springer T (1989) Primary structure of the leukocyte function-associated molecule-1 α subunit: an integrin with an embedded domain defining a protein superfamily. J Cell Biol 108:703–712

    CAS  PubMed  Google Scholar 

  • Lau TL, Dua V, Ulmer TS (2008a) Structure of the integrin alphaIIb transmembrane segment. J Biol Chem 283:16162–16168

    CAS  PubMed  Google Scholar 

  • Lau TL, Partridge AW, Ginsberg MH, Ulmer TS (2008b) Structure of the integrin beta3 transmembrane segment in phospholipid bicelles and detergent micelles. Biochemistry 47:4008–4016

    CAS  PubMed  Google Scholar 

  • Lau TL, Kim C, Ginsberg MH, Ulmer TS (2009) The structure of the integrin alphaIIbbeta3 transmembrane complex explains integrin transmembrane signalling. EMBO J 28:1351–1361

    CAS  PubMed  Google Scholar 

  • Lee JO, Bankston LA, Arnaout MA, Liddington RC (1995a) Two conformations of the integrin A-domain (I-domain): a pathway for activation? Structure 3:1333–1340

    CAS  PubMed  Google Scholar 

  • Lee JO, Rieu P, Arnaout MA, Liddington R (1995b) Crystal structure of the A domain from the α subunit of integrin CR3 (CD11b/CD18). Cell 80:631–638

    CAS  PubMed  Google Scholar 

  • Legate KR, Fässler R (2009) Mechanisms that regulate adaptor binding to β-integrin cytoplasmic tails. J Cell Sci 122:187–198

    CAS  PubMed  Google Scholar 

  • Legate KR, Wickström SA, Fässler R (2009) Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev 23:397–418

    CAS  PubMed  Google Scholar 

  • Legge GB, Kriwacki RW, Chung J, Hommel U, Ramage P, Case DA, Dyson HJ, Wright PE (2000) NMR solution structure of the inserted domain of human leukocyte function associated antigen-1. J Mol Biol 295:1251–1264

    CAS  PubMed  Google Scholar 

  • Li R, Rieu P, Griffith DL, Scott D, Arnaout MA (1998) Two functional states of the CD11b A-domain: correlations with key features of two Mn2+-complexed crystal structures. J Cell Biol 143:1523–1534

    CAS  PubMed  Google Scholar 

  • Li R, Babu CR, Lear JD, Wand AJ, Bennett JS, DeGrado WF (2001) Oligomerization of the integrin alphaIIbbeta3: roles of the transmembrane and cytoplasmic domains. Proc Natl Acad Sci USA 98:12462–12467

    CAS  PubMed  Google Scholar 

  • Li W, Metcalf DG, Gorelik R, Li R, Mitra N, Nanda V, Law PB, Lear JD, Degrado WF, Bennett JS (2005) A push-pull mechanism for regulating integrin function. Proc Natl Acad Sci USA 102:1424–1429

    CAS  PubMed  Google Scholar 

  • Li S, Wang H, Peng B, Zhang M, Zhang D, Hou S, Guo Y, Ding J (2009) Efalizumab binding to the LFA-1 alphaL I domain blocks ICAM-1 binding via steric hindrance. Proc Natl Acad Sci USA 106:4349–4354

    CAS  PubMed  Google Scholar 

  • Lin EY, Guckian KM, Silvian L, Chin D, Boriack-Sjodin PA, van Vlijmen H, Friedman JE, Scott DM (2008) Structure-activity relationship of ortho- and meta-phenol based LFA-1 ICAM inhibitors. Bioorg Med Chem Lett 18:5245–5248

    CAS  PubMed  Google Scholar 

  • Lu CF, Springer TA (1997) The alpha subunit cytoplasmic domain regulates the assembly and adhesiveness of integrin lymphocyte function-associated antigen-1. J Immunol 159:268–278

    CAS  PubMed  Google Scholar 

  • Lu C, Takagi J, Springer TA (2001) Association of the membrane proximal regions of the alpha and beta subunit cytoplasmic domains constrains an integrin in the inactive state. J Biol Chem 276:14642–14648

    CAS  PubMed  Google Scholar 

  • Luo BH, Springer TA, Takagi J (2004a) A specific interface between integrin transmembrane helices and affinity for ligand. PLoS Biol 2:e153

    PubMed  Google Scholar 

  • Luo BH, Takagi J, Springer TA (2004b) Locking the beta3 integrin I-like domain into high and low affinity conformations with disulfides. J Biol Chem 279:10215–10221

    CAS  PubMed  Google Scholar 

  • Luo BH, Carman CV, Springer TA (2007) Structural basis of integrin regulation and signaling. Annu Rev Immunol 25:619–647

    CAS  PubMed  Google Scholar 

  • Mahalingam B, Ajroud K, Alonso JL, Anand S, Adair BD, Horenstein AL, Malavasi F, Xiong JP, Arnaout MA (2011) Stable coordination of the inhibitory Ca2+ ion at the metal ion-dependent adhesion site in integrin CD11b/CD18 by an antibody-derived ligand aspartate: implications for integrin regulation and structure-based drug design. J Immunol 187:6393–6401

    CAS  PubMed  Google Scholar 

  • Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39:D225–D229

    CAS  PubMed  Google Scholar 

  • Margadant C, Sonnenberg A (2010) Integrin-TGF-β crosstalk in fibrosis, cancer and wound healing. EMBO Rep 11:97–105

    CAS  PubMed  Google Scholar 

  • May AP, Ponting CP (1999) Integrin α- and β4-subunit-domain homologues in cyanobacterial proteins. Trends Biochem Sci 24:12–13

    CAS  PubMed  Google Scholar 

  • Mayer U, Saher G, Fässler R, Bornemann A, Echtermeyer F, von der Mark H, Miosge N, Poschl E, von der Mark K (1997) Absence of integrin α7 causes a novel form of muscular dystrophy. Nat Genet 17:318–323

    CAS  PubMed  Google Scholar 

  • McCleverty CJ, Liddington RC (2003) Engineered allosteric mutants of the integrin alphaMbeta2 I domain: structural and functional studies. Biochem J 372:121–127

    CAS  PubMed  Google Scholar 

  • McHugh KP, Hodivala-Dilke K, Zheng MH, Namba N, Lam J, Novack D, Feng X, Ross FP, Hynes RO, Teitelbaum SL (2000) Mice lacking β3 integrins are osteosclerotic because of dysfunctional osteoclasts. J Clin Invest 105:433–440

    CAS  PubMed  Google Scholar 

  • Metcalf DG, Moore DT, Wu Y, Kielec JM, Molnar K, Valentine KG, Wand AJ, Bennett JS, DeGrado WF (2010) NMR analysis of the alphaIIb beta3 cytoplasmic interaction suggests a mechanism for integrin regulation. Proc Natl Acad Sci USA 107:22481–22486

    CAS  PubMed  Google Scholar 

  • Miyazawa S, Azumi K, Nonaka M (2001) Cloning and characterization of integrin α subunits from the solitary ascidian Halocynthia roretzi. J Immunol 166:1710–1715

    CAS  PubMed  Google Scholar 

  • Moser M, Legate KR, Zent R, Fässler R (2009) The tail of integrins, talin, and kindlins. Science 324:895–899

    CAS  PubMed  Google Scholar 

  • Mould AP, Barton SJ, Askari JA, McEwan PA, Buckley PA, Craig SE, Humphries MJ (2003a) Conformational changes in the integrin beta A domain provide a mechanism for signal transduction via hybrid domain movement. J Biol Chem 278:17028–17035

    CAS  PubMed  Google Scholar 

  • Mould AP, Barton SJ, Askari JA, Craig SE, Humphries MJ (2003b) Role of ADMIDAS cation-binding site in ligand recognition by integrin alpha 5 beta 1. J Biol Chem 278:51622–51629

    CAS  PubMed  Google Scholar 

  • Müller WE (1997) Origin of metazoan adhesion molecules and adhesion receptors as deduced from cDNA analyses in the marine sponge Geodia cydonium: a review. Cell Tissue Res 289:383–395

    PubMed  Google Scholar 

  • Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540

    CAS  PubMed  Google Scholar 

  • Nagae M, Re S, Mihara E, Nogi T, Sugita Y, Takagi J (2012) Crystal structure of α5β1 integrin ectodomain: atomic details of the fibronectin receptor. J Cell Biol 197:131–140

    CAS  PubMed  Google Scholar 

  • Nandrot EF, Kim Y, Brodie SE, Huang X, Sheppard D, Finnemann SC (2004) Loss of synchronized retinal phagocytosis and age-related blindness in mice lacking αvβ5 integrin. J Exp Med 200:1539–1545

    CAS  PubMed  Google Scholar 

  • Newham P, Humphries MJ (1996) Integrin adhesion receptors: structure, function and implications for biomedicine. Mol Med Today 2:304–313

    CAS  PubMed  Google Scholar 

  • Newham P, Craig SE, Seddon GN, Schofield NR, Rees A, Edwards RRM, Jones EY, Humphries MJ (1997) α4 integrin binding interfaces on VCAM-1 and MAdCAM-1: integrin binding footprints identify accessory binding sites that play a role in integrin specificity. J Biol Chem 272:19429–19440

    CAS  PubMed  Google Scholar 

  • Nolte M, Pepinsky RB, Venyaminov SY, Koteliansky V, Gotwals PJ, Karpusas M (1999) Crystal structure of the alpha1beta1 integrin I-domain: insights into integrin I-domain function. FEBS Lett 452:379–385

    CAS  PubMed  Google Scholar 

  • Nymalm Y, Puranen JS, Nyholm TK, Käpylä J, Kidron H, Pentikäinen OT, Airenne TT, Heino J, Slotte JP, Johnson MS, Salminen TA (2004) Jararhagin-derived RKKH peptides induce structural changes in alpha1I domain of human integrin alpha1beta1. J Biol Chem 279:7962–7970

    CAS  PubMed  Google Scholar 

  • O’Toole TE, Mandelman D, Forsyth J, Shattil SJ, Plow EF, Ginsberg MH (1991) Modulation of the affinity of integrin alpha IIb beta 3 (GPIIb-IIIa) by the cytoplasmic domain of alpha IIb. Science 254:845–847

    PubMed  Google Scholar 

  • O’Toole TE, Katagiri Y, Faull RJ, Peter K, Tamura R, Quaranta V, Loftus JC, Shattil SJ, Ginsberg MH (1994) Integrin cytoplasmic domains mediate inside-out signal transduction. J Cell Biol 124:1047–1059

    PubMed  Google Scholar 

  • Pancer Z, Kruse M, Müller I, Müller WE (1997) On the origin of Metazoan adhesion receptors: cloning of integrin α subunit from the sponge Geodia cydonium. Mol Biol Evol 14:391–398

    CAS  PubMed  Google Scholar 

  • Parry CS, Gorski J, Stern LJ (2007) Crystallographic structure of the human leukocyte antigen DRA, DRB3*0101: models of a directional alloimmune response and autoimmunity. J Mol Biol 371:435–446

    CAS  PubMed  Google Scholar 

  • Partridge AW, Liu S, Kim S, Bowie JU, Ginsberg MH (2005) Transmembrane domain helix packing stabilizes integrin alphaIIbbeta3 in the low affinity state. J Biol Chem 280:7294–7300

    CAS  PubMed  Google Scholar 

  • Pentikäinen O, Hoffrén M-A, Nyrönen T, Ivaska J, Käpyla J, Heino J, Johnson MS (1999) Molecular modeling of the interaction between the peptide derived from the snake venom metalloproteinase of Bothrops jararaca and human integrin α2I domain. J Biol Chem 274:31493–31505

    PubMed  Google Scholar 

  • Ponting CP, Aravind L, Schultz J, Bork P, Koonin EV (1999) Eukaryotic signalling domain homologues in archaea and bacteria. Ancient ancestry and horizontal gene transfer. J Mol Biol 289:729–745

    CAS  PubMed  Google Scholar 

  • Potin D, Launay M, Monatlik F, Malabre P, Fabreguettes M, Fouquet A, Maillet M, Nicolai E, Dorgeret L, Chevallier F, Besse D, Dufort M, Caussade F, Ahmad SZ, Stetsko DK, Skala S, Davis PM, Balimane P, Patel K, Yang Z, Marathe P, Postelneck J, Townsend RM, Goldfarb V, Sheriff S, Einspahr H, Kish K, Malley MF, DiMarco JD, Gougoutas JZ, Kadiyala P, Cheney DL, Tejwani RW, Murphy DK, Mcintyre KW, Yang X, Chao S, Leith L, Xiao Z, Mathur A, Chen BC, Wu DR, Traeger SC, McKinnon M, Barrish JC, Robl JA, Iwanowicz EJ, Suchard SJ, Dhar TG (2006) Discovery and development of 5-[(5S,9R)-9-(4-cyanophenyl)-3-(3,5-dichlorophenyl)-1-methyl-2,4-dioxo-1,3,7-tria zaspiro[4.4]non-7-yl-methyl]-3-thiophenecarboxylic acid (BMS-587101)—a small molecule antagonist of leukocyte function associated antigen-1. J Med Chem 49:6946–6949

    CAS  PubMed  Google Scholar 

  • Putnam NH, Butts T, Ferrier DE, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu JK, Benito-Gutiérrez EL, Dubchak I, Garcia-Fernàndez J, Gibson-Brown JJ, Grigoriev IV, Horton AC, de Jong PJ, Jurka J, Kapitonov VV, Kohara Y, Kuroki Y, Lindquist E, Lucas S, Osoegawa K, Pennacchio LA, Salamov AA, Satou Y, Sauka-Spengler T, Schmutz J, Shin-I T, Toyoda A, Bronner-Fraser M, Fujiyama A, Holland LZ, Holland PW, Satoh N, Rokhsar DS (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453:1064–1071

    CAS  PubMed  Google Scholar 

  • Qu A, Leahy DJ (1995) Crystal structure of the I-domain from the CD11a/CD18 (LFA-1, alpha L beta 2) integrin. Proc Natl Acad Sci USA 92:10277–10281

    CAS  PubMed  Google Scholar 

  • Qu A, Leahy DJ (1996) The role of the divalent cation in the structure of the I domain from the CD11a/CD18 integrin. Structure 4:931–942

    CAS  PubMed  Google Scholar 

  • Quistgaard EM, Thirup SS (2009) Sequence and structural analysis of the Asp-box motif and Asp-box β-propellers; a widespread propeller-type characteristic of the Vps10 domain family and several glycoside hydrolase families. BMC Struct Biol 9:46

    PubMed  Google Scholar 

  • Redruello B, Louro B, Anjos L, Silva N, Greenwell RS, Canario AV, Power DM (2010) CRTAC1 homolog proteins are conserved from cyanobacteria to man and secreted by the teleost fish pituitary gland. Gene 456:1–14

    CAS  PubMed  Google Scholar 

  • Reynolds LE, Wyder L, Lively JC, Taverna D, Robinson SD, Huang X, Sheppard D, Hynes RO, Hodivala-Dilke KM (2002) Enhanced pathological angiogenesis in mice lacking β3 integrin or β3 and β5 integrins. Nat Med 8:27–34

    CAS  PubMed  Google Scholar 

  • Rich RL, Deivanayagam CC, Owens RT, Carson M, Höök A, Moore D, Symersky J, Yang VW, Narayana SV, Höök M (1999) Trench-shaped binding sites promote multiple classes of interactions between collagen and the adherence receptors, alpha(1)beta(1) integrin and Staphylococcus aureus cna MSCRAMM. J Biol Chem 274:24906–24913

    CAS  PubMed  Google Scholar 

  • Rigden DJ, Galperin MY (2004) The DxDxDG motif for calcium binding: multiple structural contexts and implications for evolution. J Mol Biol 343:971–984

    CAS  PubMed  Google Scholar 

  • Schierwater B, Eitel M, Jakob W, Osigus HJ, Hadrys H, Dellaporta SL, Kolokotronis SO, Desalle R (2009) Concatenated analysis sheds light on early metazoan evolution and fuels a modern “urmetazoon” hypothesis. PLoS Biol 7:e20

    PubMed  Google Scholar 

  • Schuster-Böckler B, Schultz J, Rahmann S (2004) Logos for visualization of protein families. BMC Bioinformatics 5:7

    PubMed  Google Scholar 

  • Schwartz MA, DeSimone DW (2008) Cell adhesion receptors in mechanotransduction. Curr Opin Cell Biol 20:551–556

    CAS  PubMed  Google Scholar 

  • Sebé-Pedrós A, Roger AJ, Lang FB, King N, Ruiz-Trillo I (2010) Ancient origin of the integrin-mediated adhesion and signaling machinery. Proc Natl Acad Sci USA 107:10142–10147

    PubMed  Google Scholar 

  • Shi M, Sundramurthy K, Liu B, Tan SM, Law SK, Lescar J (2005) The crystal structure of the plexin-semaphorin-integrin domain/hybrid domain/I-EGF1 segment from the human integrin beta2 subunit at 1.8-A resolution. J Biol Chem 280:30586–30593

    CAS  PubMed  Google Scholar 

  • Shi M, Foo SY, Tan SM, Mitchell EP, Law SK, Lescar J (2007) A structural hypothesis for the transition between bent and extended conformations of the leukocyte beta2 integrins. J Biol Chem 282:30198–30206

    CAS  PubMed  Google Scholar 

  • Shimaoka M, Xiao T, Liu JH, Yang Y, Dong Y, Jun CD, McCormack A, Zhang R, Joachimiak A, Takagi J, Wang JH, Springer TA (2003) Structures of the alpha L I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation. Cell 112:99–111

    CAS  PubMed  Google Scholar 

  • Siljander PR, Hamaia S, Peachey AR, Slatter DA, Smethurst PA, Ouwehand WH, Knight CG, Farndale RW (2004) Integrin activation state determines selectivity for novel recognition sites in fibrillar collagens. J Biol Chem 279:47763–47772

    CAS  PubMed  Google Scholar 

  • Song G, Yang Y, Liu JH, Casasnovas JM, Shimaoka M, Springer TA, Wang JH (2005) An atomic resolution view of ICAM recognition in a complex between the binding domains of ICAM-3 and integrin alphaLbeta2. Proc Natl Acad Sci USA 102:3366–3371

    CAS  PubMed  Google Scholar 

  • Springer TA (1997) Folding of the N-terminal, ligand-binding region of integrin α-subunits into a β-propeller domain. Proc Natl Acad Sci USA 94:65–72

    CAS  PubMed  Google Scholar 

  • Springer TA, Zhu J, Xiao T (2008) Structural basis for distinctive recognition of fibrinogen gammaC peptide by the platelet integrin alphaIIbbeta3. J Cell Biol 182:791–800

    CAS  PubMed  Google Scholar 

  • Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, Kuo A, Mitros T, Salamov A, Carpenter ML, Signorovitch AY, Moreno MA, Kamm K, Grimwood J, Schmutz J, Shapiro H, Grigoriev IV, Buss LW, Schierwater B, Dellaporta SL, Rokhsar DS (2008) The Trichoplax genome and nature of placozoans. Nature 454:955–960

    CAS  PubMed  Google Scholar 

  • Stephens LE, Sutherland AE, Klimanskaya IV, Andrieux A, Meneses J, Pedersen RA, Damsky CH (1995) Deletion of β1 integrins in mice results in inner cell mass failure and peri-implantation lethality. Genes Dev 9:1883–1895

    CAS  PubMed  Google Scholar 

  • Stepp MA, Spurr-Michaud S, Tisdale A, Elwell J, Gipson IK (1990) α6β4 integrin heterodimer is a component of hemidesmosomes. Proc Natl Acad Sci USA 87:8970–8974

    CAS  PubMed  Google Scholar 

  • Tadokoro S, Shattil SJ, Eto K, Tai V, Liddington RC, de Pereda JM, Ginsberg MH, Calderwood DA (2003) Talin binding to integrin beta tails: a final common step in integrin activation. Science 302:103–106

    CAS  PubMed  Google Scholar 

  • Takagi J, Erickson HP, Springer TA (2001) C-terminal opening mimics ’inside-out’ activation of integrin alpha5beta1. Nat Struct Biol 8:412–416

    CAS  PubMed  Google Scholar 

  • Takagi J, Strokovich K, Springer TA, Walz T (2003) Structure of integrin alpha5beta1 in complex with fibronectin. EMBO J 22:4607–4615

    CAS  PubMed  Google Scholar 

  • Takala H, Nurminen E, Nurmi SM, Aatonen M, Strandin T, Takatalo M, Kiema T, Gahmberg CG, Ylänne J, Fagerholm SC (2008) Beta2 integrin phosphorylation on Thr758 acts as a molecular switch to regulate 14-3-3 and filamin binding. Blood 112:1853–1862

    CAS  PubMed  Google Scholar 

  • Tuckwell D (1999) Evolution of von Willebrand factor A (VWA) domains. Biochem Soc Trans 27:835–840

    CAS  PubMed  Google Scholar 

  • Tulla M, Lahti M, Puranen JS, Brandt AM, Käpylä J, Domogatskaya A, Salminen TA, Tryggvason K, Johnson MS, Heino J (2008) Effects of conformational activation of integrin alpha 1I and alpha 2I domains on selective recognition of laminin and collagen subtypes. Exp Cell Res 314:1734–1743

    CAS  PubMed  Google Scholar 

  • Vinogradova O, Haas T, Plow EF, Qin J (2000) A structural basis for integrin activation by the cytoplasmic tail of the alpha IIb-subunit. Proc Natl Acad Sci USA 97:1450–1455

    CAS  PubMed  Google Scholar 

  • Vinogradova O, Velyvis A, Velyviene A, Hu B, Haas T, Plow E, Qin J (2002) A structural mechanism of integrin alpha(IIb)beta(3) “inside-out” activation as regulated by its cytoplasmic face. Cell 110:587–597

    CAS  PubMed  Google Scholar 

  • Vinogradova O, Vaynberg J, Kong X, Haas TA, Plow EF, Qin J (2004) Membrane-mediated structural transitions at the cytoplasmic face during integrin activation. Proc Natl Acad Sci USA 101:4094–4099

    CAS  PubMed  Google Scholar 

  • Vorup-Jensen T, Ostermeier C, Shimaoka M, Hommel U, Springer TA (2003) Structure and allosteric regulation of the alpha X beta 2 integrin I domain. Proc Natl Acad Sci USA 100:1873–1878

    CAS  PubMed  Google Scholar 

  • Wattanasin S, Kallen J, Myers S, Guo Q, Sabio M, Ehrhardt C, Albert R, Hommel U, Weckbecker G, Welzenbach K, Weitz-Schmidt G (2005) 1,4-Diazepane-2,5-diones as novel inhibitors of LFA-1. Bioorg Med Chem Lett 15:1217–1220

    CAS  PubMed  Google Scholar 

  • Watterson SH, Xiao Z, Dodd DS, Tortolani DR, Vaccaro W, Potin D, Launay M, Stetsko DK, Skala S, Davis PM, Lee D, Yang X, McIntyre KW, Balimane P, Patel K, Yang Z, Marathe P, Kadiyala P, Tebben AJ, Sheriff S, Chang CY, Ziemba T, Zhang H, Chen BC, DelMonte AJ, Aranibar N, McKinnon M, Barrish JC, Suchard SJ, Murali Dhar TG (2010) Small molecule antagonist of leukocyte function associated antigen-1 (LFA-1): structure-activity relationships leading to the identification of 6-((5S,9R)-9-(4-cyanophenyl)-3-(3,5-dichlorophenyl)-1-methyl-2,4-dioxo-1,3,7-tria zaspiro[4.4]nonan-7-yl)nicotinic acid (BMS-688521). J Med Chem 53:3814–3830

    CAS  PubMed  Google Scholar 

  • Wegener KL, Partridge AW, Han J, Pickford AR, Liddington RC, Ginsberg MH, Campbell ID (2007) Structural basis of integrin activation by talin. Cell 128:171–182

    CAS  PubMed  Google Scholar 

  • Weitz-Schmidt G, Welzenbach K, Dawson J, Kallen J (2004) Improved lymphocyte function-associated antigen-1 (LFA-1) inhibition by statin derivatives: molecular basis determined by x-ray analysis and monitoring of LFA-1 conformational changes in vitro and ex vivo. J Biol Chem 279:46764–46771

    CAS  PubMed  Google Scholar 

  • Weljie AM, Hwang PM, Vogel HJ (2002) Solution structures of the cytoplasmic tail complex from platelet integrin alpha IIb- and beta 3-subunits. Proc Natl Acad Sci USA 99:5878–5883

    CAS  PubMed  Google Scholar 

  • Whittaker CA, Hynes RO (2002) Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol Biol Cell 13:3369–3387

    CAS  PubMed  Google Scholar 

  • Wickström SA, Lange A, Hess MW, Polleux J, Spatz JP, Krüger M, Pfaller K, Lambacher A, Bloch W, Mann M, Huber LA, Fässler R (2010) Integrin-linked kinase controls microtubule dynamics required for plasma membrane targeting of caveolae. Dev Cell 19:574–588

    PubMed  Google Scholar 

  • Wimmer W, Perovic S, Kruse M, Schröder HC, Krasko A, Batel R, Müller WE (1999) Origin of the integrin-mediated signal transduction. Functional studies with cell cultures from the sponge Suberites domuncula. Eur J Biochem 260:156–165

    CAS  PubMed  Google Scholar 

  • Xiao T, Takagi J, Coller BS, Wang JH, Springer TA (2004) Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 432:59–67

    CAS  PubMed  Google Scholar 

  • Xie C, Shimaoka M, Xiao T, Schwab P, Klickstein LB, Springer TA (2004) The integrin α-subunit leg extends at a Ca2+-dependent epitope in the thigh/genu interface upon activation. Proc Natl Acad Sci USA 101:15422–15427

    CAS  PubMed  Google Scholar 

  • Xie C, Zhu J, Chen X, Mi L, Nishida N, Springer TA (2010) Structure of an integrin with an alpha I domain, complement receptor type 4. EMBO J 29:666–679

    CAS  PubMed  Google Scholar 

  • Xing L, Huhtala M, Pietiäinen V, Käpylä J, Vuorinen K, Marjomäki V, Heino J, Johnson MS, Hyypiä T, Cheng RH (2004) Structural and functional analysis of integrin alpha2I domain interaction with echovirus 1. J Biol Chem 279:11632–11638

    CAS  PubMed  Google Scholar 

  • Xiong JP, Li R, Essafi M, Stehle T, Arnaout MA (2000) An isoleucine-based allosteric switch controls affinity and shape shifting in integrin CD11b A-domain. J Biol Chem 275:38762–38767

    CAS  PubMed  Google Scholar 

  • Xiong JP, Stehle T, Diefenbach B, Zhang R, Dunker R, Scott DL, Joachimiak A, Goodman SL, Arnaout MA (2001) Crystal structure of the extracellular segment of integrin αVβ3. Science 294:339–345

    CAS  PubMed  Google Scholar 

  • Xiong JP, Stehle T, Zhang R, Joachimiak A, Frech M, Goodman SL, Arnaout MA (2002) Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science 296:151–155

    CAS  PubMed  Google Scholar 

  • Xiong JP, Stehle T, Goodman SL, Arnaout MA (2004) A novel adaptation of the integrin PSI domain revealed from its crystal structure. J Biol Chem 279:40252–40254

    CAS  PubMed  Google Scholar 

  • Xiong JP, Mahalingham B, Alonso JL, Borrelli LA, Rui X, Anand S, Hyman BT, Rysiok T, Müller-Pompalla D, Goodman SL, Arnaout MA (2009) Crystal structure of the complete integrin alphaVbeta3 ectodomain plus an alpha/beta transmembrane fragment. J Cell Biol 186:589–600

    CAS  PubMed  Google Scholar 

  • Yang JT, Rayburn H, Hynes RO (1993) Embryonic mesodermal defects in α5 integrin-deficient mice. Development 119:1093–1105

    CAS  PubMed  Google Scholar 

  • Yang JT, Rayburn H, Hynes RO (1995) Cell adhesion events mediated by α4 integrins are essential in placental and cardiac development. Development 121:549–560

    CAS  PubMed  Google Scholar 

  • Yang W, Shimaoka M, Salas A, Takagi J, Springer TA (2004) Intersubunit signal transmission in integrins by a receptor-like interaction with a pull spring. Proc Natl Acad Sci USA 101:2906–2911

    CAS  PubMed  Google Scholar 

  • Yang J, Ma YQ, Page RC, Misra S, Plow EF, Qin J (2009) Structure of an integrin alphaIIb beta3 transmembrane-cytoplasmic heterocomplex provides insight into integrin activation. Proc Natl Acad Sci USA 106:17729–17734

    CAS  PubMed  Google Scholar 

  • Yu Y, Zhu J, Mi LZ, Walz T, Sun H, Chen J, Springer TA (2012) Structural specializations of α(4)β(7), an integrin that mediates rolling adhesion. J Cell Biol 196:131–146

    CAS  PubMed  Google Scholar 

  • Zaidel-Bar R, Itzkovitz S, Ma’ayan A, Iyengar R, Geiger B (2007) Functional atlas of the integrin adhesome. Nat Cell Biol 9:858–867

    CAS  PubMed  Google Scholar 

  • Zaidel-Bar R (2009) Evolution of complexity in the integrin adhesome. J Cell Biol 186:317–321

    CAS  PubMed  Google Scholar 

  • Zhang H, Casasnovas JM, Jin M, Liu JH, Gahmberg CG, Springer TA, Wang JH (2008) An unusual allosteric mobility of the C-terminal helix of a high-affinity alphaL integrin I domain variant bound to ICAM-5. Mol Cell 31:432–437

    CAS  PubMed  Google Scholar 

  • Zhang H, Astrof NS, Liu JH, Wang JH, Shimaoka M (2009a) Crystal structure of isoflurane bound to integrin LFA-1 supports a unified mechanism of volatile anesthetic action in the immune and central nervous systems. FASEB J 23:2735–2740

    Google Scholar 

  • Zhang H, Liu JH, Yang W, Springer T, Shimaoka M, Wang JH (2009b) Structural basis of activation-dependent binding of ligand-mimetic antibody AL-57 to integrin LFA-1. Proc Natl Acad Sci USA 106:18345–18350

    Google Scholar 

  • Zhu J, Luo BH, Xiao T, Zhang C, Nishida N, Springer TA (2008) Structure of a complete integrin ectodomain in a physiologic resting state and activation and deactivation by applied forces. Mol Cell 32:849–861

    CAS  PubMed  Google Scholar 

  • Zhu J, Luo BH, Barth P, Schonbrun J, Baker D, Springer TA (2009) The structure of a receptor with two associating transmembrane domains on the cell surface: integrin alphaIIbbeta3. Mol Cell 34:234–249

    CAS  PubMed  Google Scholar 

  • Zhu J, Zhu J, Negri A, Provasi D, Filizola M, Coller BS, Springer TA (2010) Closed headpiece of integrin αIIbβ3 and its complex with an αIIbβ3-specific antagonist that does not induce opening. Blood 116:5050–5059

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyrki Heino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Johnson, M.S., Käpylä, J., Denessiouk, K., Airenne, T., Chouhan, B.S., Heino, J. (2013). Evolution of Cell Adhesion to Extracellular Matrix. In: Keeley, F., Mecham, R. (eds) Evolution of Extracellular Matrix. Biology of Extracellular Matrix. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36002-2_9

Download citation

Publish with us

Policies and ethics