Skip to main content

Evolutionary Insights into Fibrillin Structure and Function in the Extracellular Matrix

  • Chapter
  • First Online:
Evolution of Extracellular Matrix

Part of the book series: Biology of Extracellular Matrix ((BEM))

Abstract

The 10–12 nm diameter microfibrils of the extracellular matrix are vital components of dynamic tissues, playing a major role in providing the tissues of metazoan species with their biomechanical properties. They also have functional roles in the development of elastic fibres, as a scaffold for the deposition of tropoelastin, and in the regulation of growth factors. Fibrillins are large, ~350 kDa glycoproteins that assemble to form the microfibrils. Throughout evolution, the fibrillins show a remarkably conserved domain organisation, dominated by calcium-binding epidermal growth factor domains interspersed with transforming growth factor-β-binding protein-like domains. Mutations in the fibrillin genes cause a range of human diseases including Marfan syndrome, Beals syndrome, stiff skin syndrome and the acromelic dysplasias, which affect the skin, skeleton, ocular and cardiovascular systems. In recent years, studies using molecular, cellular and animal models have yielded new information on the processes of microfibril assembly and organisation and how their regulation of growth factors is involved in disease pathogenesis. Recent advances in bioinformatics and the availability of whole genome sequences are now providing new insights into the functions of different regions of the fibrillin polypeptides, helping us to understand how fibrillin structure and function has evolved as the extracellular matrix has increased in complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ades LC, Sreetharan D, Onikul E, Stockton V, Watson KC, Holman KJ (2002) Segregation of a novel FBN1 gene mutation, G1796E, with kyphoscoliosis and radiographic evidence of vertebral dysplasia in three generations. Am J Med Genet 109:261–270

    PubMed  Google Scholar 

  • Ahram D, Sato TS, Kohilan A, Tayeh M, Chen S, Leal S, Al-Salem M, El-Shanti H (2009) A homozygous mutation in ADAMTSL4 causes autosomal-recessive isolated ectopia lentis. Am J Hum Genet 84:274–278

    CAS  PubMed  Google Scholar 

  • Arteaga-Solis E, Gayraud B, Lee SY, Shum L, Sakai L, Ramirez F (2001) Regulation of limb patterning by extracellular microfibrils. J Cell Biol 154:275–281

    CAS  PubMed  Google Scholar 

  • Ashworth JL, Kelly V, Rock MJ, Shuttleworth CA, Kielty CM (1999a) Regulation of fibrillin carboxy-terminal furin processing by N-glycosylation, and association of amino- and carboxy-terminal sequences. J Cell Sci 112(Pt 22):4163–4171

    CAS  PubMed  Google Scholar 

  • Ashworth JL, Kelly V, Wilson R, Shuttleworth CA, Kielty CM (1999b) Fibrillin assembly: dimer formation mediated by amino-terminal sequences. J Cell Sci 112(Pt 20):3549–3558

    CAS  PubMed  Google Scholar 

  • Attias D, Stheneur C, Roy C, Collod-Beroud G, Detaint D, Faivre L, Delrue MA, Cohen L, Francannet C, Beroud C et al (2009) Comparison of clinical presentations and outcomes between patients with TGFBR2 and FBN1 mutations in Marfan syndrome and related disorders. Circulation 120:2541–2549

    CAS  PubMed  Google Scholar 

  • Baldock C, Koster AJ, Ziese U, Rock MJ, Sherratt MJ, Kadler KE, Shuttleworth CA, Kielty CM (2001) The supramolecular organization of fibrillin-rich microfibrils. J Cell Biol 152: 1045–1056

    CAS  PubMed  Google Scholar 

  • Baldock C, Siegler V, Bax DV, Cain SA, Mellody KT, Marson A, Haston JL, Berry R, Wang MC, Grossmann JG et al (2006) Nanostructure of fibrillin-1 reveals compact conformation of EGF arrays and mechanism for extensibility. Proc Natl Acad Sci U S A 103:11922–11927

    CAS  PubMed  Google Scholar 

  • Bax DV, Bernard SE, Lomas A, Morgan A, Humphries J, Shuttleworth CA, Humphries MJ, Kielty CM (2003) Cell adhesion to fibrillin-1 molecules and microfibrils is mediated by alpha 5 beta 1 and alpha v beta 3 integrins. J Biol Chem 278:34605–34616

    CAS  PubMed  Google Scholar 

  • Bax DV, Mahalingam Y, Cain S, Mellody K, Freeman L, Younger K, Shuttleworth CA, Humphries MJ, Couchman JR, Kielty CM (2007) Cell adhesion to fibrillin-1: identification of an Arg-Gly-Asp-dependent synergy region and a heparin-binding site that regulates focal adhesion formation. J Cell Sci 120:1383–1392

    CAS  PubMed  Google Scholar 

  • Birenheide R, Motokawa T (1994) Morphological Basis and Mechanics of Arm Movement in the Stalked Crinoid Metacrinus-Rotundus (Echinodermata, Crinoida). Mar Biol 121:273–283

    Google Scholar 

  • Bishop B, Aricescu AR, Harlos K, O’Callaghan CA, Jones EY, Siebold C (2009) Structural insights into hedgehog ligand sequestration by the human hedgehog-interacting protein HHIP. Nat Struct Mol Biol 16:698–703

    CAS  PubMed  Google Scholar 

  • Bona CA, Murai C, Casares S, Kasturi K, Nishimura H, Honjo T, Matsuda F (1997) Structure of the mutant fibrillin-1 gene in the tight skin (TSK) mouse. DNA Res 4:267–271

    CAS  PubMed  Google Scholar 

  • Booms P, Pregla R, Ney A, Barthel F, Reinhardt DP, Pletschacher A, Mundlos S, Robinson PN (2005) RGD-containing fibrillin-1 fragments upregulate matrix metalloproteinase expression in cell culture: a potential factor in the pathogenesis of the Marfan syndrome. Hum Genet 116: 51–61

    CAS  PubMed  Google Scholar 

  • Bork P, Downing AK, Kieffer B, Campbell ID (1996) Structure and distribution of modules in extracellular proteins. Q Rev Biophys 29:119–167

    CAS  PubMed  Google Scholar 

  • Brown MA, Zhao Q, Baker KA, Naik C, Chen C, Pukac L, Singh M, Tsareva T, Parice Y, Mahoney A et al (2005) Crystal structure of BMP-9 and functional interactions with pro-region and receptors. J Biol Chem 280:25111–25118

    CAS  PubMed  Google Scholar 

  • Bussiere CT, Wright GM, DeMont ME (2006) The mechanical function and structure of aortic microfibrils in the lobster Homarus americanus. Comp Biochem Physiol A Mol Integr Physiol 143:417–428

    PubMed  Google Scholar 

  • Cain SA, Baldock C, Gallagher J, Morgan A, Bax DV, Weiss AS, Shuttleworth CA, Kielty CM (2005) Fibrillin-1 interactions with heparin. Implications for microfibril and elastic fiber assembly. J Biol Chem 280:30526–30537

    CAS  PubMed  Google Scholar 

  • Cain SA, Baldwin AK, Mahalingam Y, Raynal B, Jowitt TA, Shuttleworth CA, Couchman JR, Kielty CM (2008) Heparan sulfate regulates fibrillin-1 N- and C-terminal interactions. J Biol Chem 283:27017–27027

    CAS  PubMed  Google Scholar 

  • Cardy CM, Handford PA (1998) Metal ion dependency of microfibrils supports a rod-like conformation for fibrillin-1 calcium-binding epidermal growth factor-like domains. J Mol Biol 276:855–860

    CAS  PubMed  Google Scholar 

  • Charbonneau NL, Carlson EJ, Tufa S, Sengle G, Manalo EC, Carlberg VM, Ramirez F, Keene DR, Sakai LY (2010) In vivo studies of mutant fibrillin-1 microfibrils. J Biol Chem 285: 24943–24955

    CAS  PubMed  Google Scholar 

  • Chen Y, Ali T, Todorovic V, O’Leary JM, Kristina Downing A, Rifkin DB (2005) Amino acid requirements for formation of the TGF-beta-latent TGF-beta binding protein complexes. J Mol Biol 345:175–186

    CAS  PubMed  Google Scholar 

  • Choi Y, Chung H, Jung H, Couchman JR, Oh ES (2011) Syndecans as cell surface receptors: Unique structure equates with functional diversity. Matrix Biol 30:93–99

    CAS  PubMed  Google Scholar 

  • Coghlan A, Wolfe KH (2002) Fourfold faster rate of genome rearrangement in nematodes than in Drosophila. Genome Res 12:857–867

    CAS  PubMed  Google Scholar 

  • Cohn RD, van Erp C, Habashi JP, Soleimani AA, Klein EC, Lisi MT, Gamradt M, ap Rhys CM, Holm TM, Loeys BL et al (2007) Angiotensin II type 1 receptor blockade attenuates TGF-beta-induced failure of muscle regeneration in multiple myopathic states. Nat Med 13:204–210

    CAS  PubMed  Google Scholar 

  • Comeglio P, Evans AL, Brice G, Cooling RJ, Child AH (2002) Identification of FBN1 gene mutations in patients with ectopia lentis and marfanoid habitus. Br J Ophthalmol 86: 1359–1362

    CAS  PubMed  Google Scholar 

  • Cordle J, Johnson S, Tay JZ, Roversi P, Wilkin MB, de Madrid BH, Shimizu H, Jensen S, Whiteman P, Jin B et al (2008) A conserved face of the Jagged/Serrate DSL domain is involved in Notch trans-activation and cis-inhibition. Nat Struct Mol Biol 15:849–857

    CAS  PubMed  Google Scholar 

  • Corson GM, Chalberg SC, Dietz HC, Charbonneau NL, Sakai LY (1993) Fibrillin binds calcium and is coded by cDNAs that reveal a multidomain structure and alternatively spliced exons at the 5′ end. Genomics 17:476–484

    CAS  PubMed  Google Scholar 

  • Corson GM, Charbonneau NL, Keene DR, Sakai LY (2004) Differential expression of fibrillin-3 adds to microfibril variety in human and avian, but not rodent, connective tissues. Genomics 83:461–472

    CAS  PubMed  Google Scholar 

  • Davison IG, Wright GM, DeMont ME (1995) The structure and physical properties of invertebrate and primitive vertebrate arteries. J Exp Biol 198:2185–2196

    CAS  PubMed  Google Scholar 

  • Dietz HC, Cutting GR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM, Puffenberger EG, Hamosh A, Nanthakumar EJ, Curristin SM et al (1991) Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352:337–339

    CAS  PubMed  Google Scholar 

  • Dietz HC, Loeys B, Carta L, Ramirez F (2005) Recent progress towards a molecular understanding of Marfan syndrome. Am J Med Genet C Semin Med Genet 139C:4–9

    CAS  PubMed  Google Scholar 

  • Dietz HC, McIntosh I, Sakai LY, Corson GM, Chalberg SC, Pyeritz RE, Francomano CA (1993) Four novel FBN1 mutations: significance for mutant transcript level and EGF-like domain calcium binding in the pathogenesis of Marfan syndrome. Genomics 17:468–475

    CAS  PubMed  Google Scholar 

  • Downing AK, Knott V, Werner JM, Cardy CM, Campbell ID, Handford PA (1996) Solution structure of a pair of calcium-binding epidermal growth factor-like domains: implications for the Marfan syndrome and other genetic disorders. Cell 85:597–605

    CAS  PubMed  Google Scholar 

  • El-Hallous E, Sasaki T, Hubmacher D, Getie M, Tiedemann K, Brinckmann J, Batge B, Davis EC, Reinhardt DP (2007) Fibrillin-1 interactions with fibulins depend on the first hybrid domain and provide an adaptor function to tropoelastin. J Biol Chem 282:8935–8946

    CAS  PubMed  Google Scholar 

  • Eriksen TA, Wright DM, Purslow PP, Duance VC (2001) Role of Ca(2+) for the mechanical properties of fibrillin. Proteins 45:90–95

    CAS  PubMed  Google Scholar 

  • Faivre L, Collod-Beroud G, Loeys BL, Child A, Binquet C, Gautier E, Callewaert B, Arbustini E, Mayer K, Arslan-Kirchner M et al (2007) Effect of mutation type and location on clinical outcome in 1,013 probands with Marfan syndrome or related phenotypes and FBN1 mutations: an international study. Am J Hum Genet 81:454–466

    CAS  PubMed  Google Scholar 

  • Faivre L, Gorlin RJ, Wirtz MK, Godfrey M, Dagoneau N, Samples JR, Le Merrer M, Collod-Beroud G, Boileau C, Munnich A, Cormier-Daire V (2003) In frame fibrillin-1 gene deletion in autosomal dominant Weill-Marchesani syndrome. J Med Genet 40:34–36

    CAS  PubMed  Google Scholar 

  • Faury G (2001) Function-structure relationship of elastic arteries in evolution: from microfibrils to elastin and elastic fibres. Pathol Biol 49:310–325

    CAS  PubMed  Google Scholar 

  • Fontana L, Chen Y, Prijatelj P, Sakai T, Fassler R, Sakai LY, Rifkin DB (2005) Fibronectin is required for integrin alphavbeta6-mediated activation of latent TGF-beta complexes containing LTBP-1. FASEB J 19:1798–1808

    CAS  PubMed  Google Scholar 

  • Gambini C, Abou B, Ponton A, Cornelissen AJ (2012) Micro- and macrorheology of jellyfish extracellular matrix. Biophys J 102:1–9

    CAS  PubMed  Google Scholar 

  • George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO (1993) Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119:1079–1091

    CAS  PubMed  Google Scholar 

  • Giltay R, Timpl R, Kostka G (1999) Sequence, recombinant expression and tissue localization of two novel extracellular matrix proteins, fibulin-3 and fibulin-4. Matrix Biol 18:469–480

    CAS  PubMed  Google Scholar 

  • Glab J, Wess T (2008) Changes in the molecular packing of fibrillin microfibrils during extension indicate intrafibrillar and interfibrillar reorganization in elastic response. J Mol Biol 383: 1171–1180

    CAS  PubMed  Google Scholar 

  • Gleizes PE, Beavis RC, Mazzieri R, Shen B, Rifkin DB (1996) Identification and characterization of an eight-cysteine repeat of the latent transforming growth factor-beta binding protein-1 that mediates bonding to the latent transforming growth factor-beta1. J Biol Chem 271: 29891–29896

    CAS  PubMed  Google Scholar 

  • Godfrey M (2004) Fibrillin-2 mutations in congenital contractural arachnodactyly. In: Robinson PN, Godfrey M (eds) Marfan syndrome: a primer for clinicians and scientists. Kluwer, New York, p 123

    Google Scholar 

  • Goldblatt J, Hyatt J, Edwards C, Walpole I (2011) Further evidence for a marfanoid syndrome with neonatal progeroid features and severe generalized lipodystrophy due to frameshift mutations near the 3′ end of the FBN1 gene. Am J Med Genet 155A:717–720

    PubMed  Google Scholar 

  • Graul-Neumann LM, Kienitz T, Robinson PN, Baasanjav S, Karow B, Gillessen-Kaesbach G, Fahsold R, Schmidt H, Hoffmann K, Passarge E (2010) Marfan syndrome with neonatal progeroid syndrome-like lipodystrophy associated with a novel frameshift mutation at the 3′ terminus of the FBN1-gene. Am J Med Genet 152A:2749–2755

    CAS  PubMed  Google Scholar 

  • Gregory KE, Ono RN, Charbonneau NL, Kuo CL, Keene DR, Bachinger HP, Sakai LY (2005) The prodomain of BMP-7 targets the BMP-7 complex to the extracellular matrix. J Biol Chem 280:27970–27980

    CAS  PubMed  Google Scholar 

  • Habashi JP, Judge DP, Holm TM, Cohn RD, Loeys BL, Cooper TK, Myers L, Klein EC, Liu G, Calvi C et al (2006) Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312:117–121

    CAS  PubMed  Google Scholar 

  • Hambleton S, Valeyev NV, Muranyi A, Knott V, Werner JM, McMichael AJ, Handford PA, Downing AK (2004) Structural and functional properties of the human notch-1 ligand binding region. Structure 12:2173–2183

    CAS  PubMed  Google Scholar 

  • Hasham SN, Guo DC, Milewicz DM (2002) Genetic basis of thoracic aortic aneurysms and dissections. Curr Opin Cardiol 17:677–683

    PubMed  Google Scholar 

  • Haston JL, Engelsen SB, Roessle M, Clarkson J, Blanch EW, Baldock C, Kielty CM, Wess TJ (2003) Raman microscopy and X-ray diffraction, a combined study of fibrillin-rich microfibrillar elasticity. J Biol Chem 278:41189–41197

    CAS  PubMed  Google Scholar 

  • Hatchwell E (1997) Shprintzen-Goldberg syndrome results from mutations in fibrillin-1, not monosomy 22q11. J Pediatr 131:164–165

    CAS  PubMed  Google Scholar 

  • Hatzirodos N, Bayne RA, Irving-Rodgers HF, Hummitzsch K, Sabatier L, Lee S, Bonner W, Gibson MA, Rainey WE, Carr BR et al (2011) Linkage of regulators of TGF-beta activity in the fetal ovary to polycystic ovary syndrome. FASEB J 25:2256–2265

    CAS  PubMed  Google Scholar 

  • Herpin A, Lelong C, Favrel P (2004) Transforming growth factor-beta-related proteins: an ancestral and widespread superfamily of cytokines in metazoans. Dev Comp Immunol 28: 461–485

    CAS  PubMed  Google Scholar 

  • Hirani R, Hanssen E, Gibson MA (2007) LTBP-2 specifically interacts with the amino-terminal region of fibrillin-1 and competes with LTBP-1 for binding to this microfibrillar protein. Matrix Biol 26:213–223

    CAS  PubMed  Google Scholar 

  • Horn D, Robinson PN (2010) Progeroid facial features and lipodystrophy associated with a novel splice site mutation in the final intron of the FBN1 gene. Am J Med Genet 155A:721–724

    Google Scholar 

  • Hubmacher D, El-Hallous EI, Nelea V, Kaartinen MT, Lee ER, Reinhardt DP (2008) Biogenesis of extracellular microfibrils: Multimerization of the fibrillin-1 C terminus into bead-like structures enables self-assembly. Proc Natl Acad Sci U S A 105:6548–6553

    CAS  PubMed  Google Scholar 

  • Isogai Z, Aspberg A, Keene DR, Ono RN, Reinhardt DP, Sakai LY (2002) Versican interacts with fibrillin-1 and links extracellular microfibrils to other connective tissue networks. J Biol Chem 277:4565–4572

    CAS  PubMed  Google Scholar 

  • Isogai Z, Ono RN, Ushiro S, Keene DR, Chen Y, Mazzieri R, Charbonneau NL, Reinhardt DP, Rifkin DB, Sakai LY (2003) Latent transforming growth factor beta-binding protein 1 interacts with fibrillin and is a microfibril-associated protein. J Biol Chem 278:2750–2757

    CAS  PubMed  Google Scholar 

  • Jensen SA, Corbett AR, Knott V, Redfield C, Handford PA (2005) Ca2+−dependent interface formation in fibrillin-1. J Biol Chem 280:14076–14084

    CAS  PubMed  Google Scholar 

  • Jensen SA, Iqbal S, Lowe ED, Redfield C, Handford PA (2009) Structure and interdomain interactions of a hybrid domain: a disulphide-rich module of the fibrillin/LTBP superfamily of matrix proteins. Structure 17:759–768

    CAS  PubMed  Google Scholar 

  • Jensen SA, Reinhardt DP, Gibson MA, Weiss AS (2001) Protein interaction studies of MAGP-1 with tropoelastin and fibrillin-1. J Biol Chem 276:39661–39666

    CAS  PubMed  Google Scholar 

  • Jensen SA, Robertson IB, Handford PA (2012) Dissecting the fibrillin microfibril: structural insights into organization and function. Structure 20:215–225

    CAS  PubMed  Google Scholar 

  • Jones CJ, Sear CH, Grant ME (1980) An ultrastructural study of fibroblasts derived from bovine ligamentum nuchae and their capacity for elastogenesis in culture. J Pathol 131:35–53

    CAS  PubMed  Google Scholar 

  • Jordan CD, Bohling SD, Charbonneau NL, Sakai LY (2010) Fibrillins in human adult ovary and polycystic ovary syndrome: is fibrillin-3 affected in PCOS? J Histochem Cytochem 58:903–915

    Google Scholar 

  • Jovanovic J, Iqbal S, Jensen S, Mardon H, Handford P (2008) Fibrillin-integrin interactions in health and disease. Biochem Soc Trans 36:257–262

    CAS  PubMed  Google Scholar 

  • Jovanovic J, Takagi J, Choulier L, Abrescia NG, Stuart DI, van der Merwe PA, Mardon HJ, Handford PA (2007) alphaVbeta6 is a novel receptor for human fibrillin-1. Comparative studies of molecular determinants underlying integrin-rgd affinity and specificity. J Biol Chem 282:6743–6751

    CAS  PubMed  Google Scholar 

  • Judge DP, Biery NJ, Keene DR, Geubtner J, Myers L, Huso DL, Sakai LY, Dietz HC (2004) Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome. J Clin Invest 114:172–181

    CAS  PubMed  Google Scholar 

  • Kahlem P, Newfeld SJ (2009) Informatics approaches to understanding TGFbeta pathway regulation. Development 136:3729–3740

    CAS  PubMed  Google Scholar 

  • Kantola AK, Keski-Oja J, Koli K (2008) Fibronectin and heparin binding domains of latent TGF-beta binding protein (LTBP)-4 mediate matrix targeting and cell adhesion. Exp Cell Res 314: 2488–2500

    CAS  PubMed  Google Scholar 

  • Keene DR, Maddox BK, Kuo HJ, Sakai LY, Glanville RW (1991) Extraction of extendable beaded structures and their identification as fibrillin-containing extracellular matrix microfibrils. J Histochem Cytochem 39:441–449

    CAS  PubMed  Google Scholar 

  • Kettle S, Card CM, Hutchinson S, Sykes B, Handford PA (2000) Characterisation of fibrillin-1 cDNA clones in a human fibroblast cell line that assembles microfibrils. Int J Biochem Cell Biol 32:201–214

    CAS  PubMed  Google Scholar 

  • Kettle S, Yuan X, Grundy G, Knott V, Downing AK, Handford PA (1999) Defective calcium binding to fibrillin-1: consequence of an N2144S change for fibrillin-1 structure and function. J Mol Biol 285:1277–1287

    CAS  PubMed  Google Scholar 

  • Kewley MA, Williams G, Steven FS (1978) Studies of elastic tissue formation in the developing bovine ligamentum nuchae. J Pathol 124:95–101

    CAS  PubMed  Google Scholar 

  • Kielty CM, Cummings C, Whittaker SP, Shuttleworth CA, Grant ME (1991) Isolation and ultrastructural analysis of microfibrillar structures from foetal bovine elastic tissues. Relative abundance and supramolecular architecture of type VI collagen assemblies and fibrillin. J Cell Sci 99(Pt 4):797–807

    CAS  PubMed  Google Scholar 

  • Kielty CM, Shuttleworth CA (1993) The role of calcium in the organization of fibrillin microfibrils. FEBS Lett 336:323–326

    CAS  PubMed  Google Scholar 

  • Kielty CM, Wess TJ, Haston L, Ashworth JL, Sherratt MJ, Shuttleworth CA (2002) Fibrillin-rich microfibrils: elastic biopolymers of the extracellular matrix. J Muscle Res Cell Motil 23: 581–596

    CAS  PubMed  Google Scholar 

  • Kinsey R, Williamson MR, Chaudhry S, Mellody KT, McGovern A, Takahashi S, Shuttleworth CA, Kielty CM (2008) Fibrillin-1 microfibril deposition is dependent on fibronectin assembly. J Cell Sci 121:2696–2704

    CAS  PubMed  Google Scholar 

  • Kumaratilake JS, Gibson MA, Fanning JC, Cleary EG (1989) The tissue distribution of microfibrils reacting with a monospecific antibody to MAGP, the major glycoprotein antigen of elastin-associated microfibrils. Eur J Cell Biol 50:117–127

    CAS  PubMed  Google Scholar 

  • Kuo CL, Isogai Z, Keene DR, Hazeki N, Ono RN, Sengle G, Peter Bachinger H, Sakai LY (2007) Effects of fibrillin-1 degradation on microfibril ultrastructure. J Biol Chem 282:4007–4020

    CAS  PubMed  Google Scholar 

  • Kutz WE, Wang LW, Bader HL, Majors AK, Iwata K, Traboulsi EI, Sakai LY, Keene DR, Apte SS (2011) ADAMTS10 protein interacts with fibrillin-1 and promotes its deposition in extracellular matrix of cultured fibroblasts. J Biol Chem 286:17156–17167

    CAS  PubMed  Google Scholar 

  • Labat-Robert J (2012) Cell-Matrix interactions, the role of fibronectin and integrins. A survey. Pathol Biol (Paris) 60:15–19

    CAS  Google Scholar 

  • Labat-Robert J, Robert L, Auger C, Lethias C, Garrone R (1981) Fibronectin-like protein in Porifera: its role in cell aggregation. Proc Natl Acad Sci U S A 78:6261–6265

    CAS  PubMed  Google Scholar 

  • Lack J, O’Leary JM, Knott V, Yuan X, Rifkin DB, Handford PA, Downing AK (2003) Solution structure of the third TB domain from LTBP1 provides insight into assembly of the large latent complex that sequesters latent TGF-beta. J Mol Biol 334:281–291

    CAS  PubMed  Google Scholar 

  • Le Goff C, Cormier-Daire V (2011) The ADAMTS(L) family and human genetic disorders. Hum Mol Genet 20:R163–R167

    PubMed  Google Scholar 

  • Le Goff C, Mahaut C, Wang LW, Allali S, Abhyankar A, Jensen S, Zylberberg L, Collod-Beroud G, Bonnet D, Alanay Y et al (2011) Mutations in the TGFbeta binding-protein-like domain 5 of FBN1 are responsible for acromicric and geleophysic dysplasias. Am J Hum Genet 89:7–14

    PubMed  Google Scholar 

  • Lee B, Godfrey M, Vitale E, Hori H, Mattei MG, Sarfarazi M, Tsipouras P, Ramirez F, Hollister DW (1991) Linkage of Marfan syndrome and a phenotypically related disorder to two different fibrillin genes. Nature 352:330–334

    CAS  PubMed  Google Scholar 

  • Lee SJ, McPherron AC (2001) Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci U S A 98:9306–9311

    CAS  PubMed  Google Scholar 

  • Lee SS, Knott V, Jovanovic J, Harlos K, Grimes JM, Choulier L, Mardon HJ, Stuart DI, Handford PA (2004) Structure of the integrin binding fragment from fibrillin-1 gives new insights into microfibril organization. Structure 12:717–729

    CAS  PubMed  Google Scholar 

  • Lin G, Tiedemann K, Vollbrandt T, Peters H, Batge B, Brinckmann J, Reinhardt DP (2002) Homo- and heterotypic fibrillin-1 and −2 interactions constitute the basis for the assembly of microfibrils. J Biol Chem 277:50795–50804

    CAS  PubMed  Google Scholar 

  • Liu W, Qian C, Comeau K, Brenn T, Furthmayr H, Francke U (1996) Mutant fibrillin-1 monomers lacking EGF-like domains disrupt microfibril assembly and cause severe marfan syndrome. Hum Mol Genet 5:1581–1587

    CAS  PubMed  Google Scholar 

  • Loeys BL, Chen J, Neptune ER, Judge DP, Podowski M, Holm T, Meyers J, Leitch CC, Katsanis N, Sharifi N et al (2005) A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet 37:275–281

    CAS  PubMed  Google Scholar 

  • Loeys BL, Gerber EE, Riegert-Johnson D, Iqbal S, Whiteman P, McConnell V, Chillakuri CR, Macaya D, Coucke PJ, De Paepe A et al (2010) Mutations in fibrillin-1 cause congenital scleroderma: stiff skin syndrome. Sci Transl Med 2:23ra20

    CAS  PubMed  Google Scholar 

  • Lönnqvist, L, Reinhardt, D, Sakai, L, Peltonen, L (1998) Evidence for furin-type activity-mediated C-terminal processing of profibrillin-1 and interference in the processing by certain mutations. Hum Mol Genet 7(13):2039–2044

    PubMed  Google Scholar 

  • Lu Y, Holmes DF, Baldock C (2005) Evidence for the intramolecular pleating model of fibrillin microfibril organisation from single particle image analysis. J Mol Biol 349:73–85

    CAS  PubMed  Google Scholar 

  • Malak TM, Bell SC (1994) Distribution of fibrillin-containing microfibrils and elastin in human fetal membranes: a novel molecular basis for membrane elasticity. Am J Obstet Gynecol 171:195–205

    CAS  PubMed  Google Scholar 

  • Marson A, Rock MJ, Cain SA, Freeman LJ, Morgan A, Mellody K, Shuttleworth CA, Baldock C, Kielty CM (2005) Homotypic fibrillin-1 interactions in microfibril assembly. J Biol Chem 280: 5013–5021

    CAS  PubMed  Google Scholar 

  • Maslen CL, Corson GM, Maddox BK, Glanville RW, Sakai LY (1991) Partial sequence of a candidate gene for the Marfan syndrome. Nature 352:334–337

    CAS  PubMed  Google Scholar 

  • Massam-Wu T, Chiu M, Choudhury R, Chaudhry SS, Baldwin AK, McGovern A, Baldock C, Shuttleworth CA, Kielty CM (2010) Assembly of fibrillin microfibrils governs extracellular deposition of latent TGF beta. J Cell Sci 123:3006–3018

    CAS  PubMed  Google Scholar 

  • McConnell CJ, DeMont ME, Wright GM (1997) Microfibrils provide non-linear elastic behaviour in the abdominal artery of the lobster Homarus americanus. J Physiol 499(Pt 2):513–526

    CAS  PubMed  Google Scholar 

  • McGettrick AJ, Knott V, Willis A, Handford PA (2000) Molecular effects of calcium binding mutations in Marfan syndrome depend on domain context. Hum Mol Genet 9:1987–1994

    CAS  PubMed  Google Scholar 

  • Megill WM, Gosline JM, Blake RW (2005) The modulus of elasticity of fibrillin-containing elastic fibres in the mesoglea of the hydromedusa Polyorchis penicillatus. J Exp Biol 208:3819–3834

    PubMed  Google Scholar 

  • Milewicz DM, Grossfield J, Cao SN, Kielty C, Covitz W, Jewett T (1995) A mutation in FBN1 disrupts profibrillin processing and results in isolated skeletal features of the Marfan syndrome. J Clin Invest 95:2373–2378

    CAS  PubMed  Google Scholar 

  • Miyazono K, Olofsson A, Colosetti P, Heldin CH (1991) A role of the latent TGF-beta 1-binding protein in the assembly and secretion of TGF-beta 1. EMBO J 10:1091–1101

    CAS  PubMed  Google Scholar 

  • Morales J, Al-Sharif L, Khalil DS, Shinwari JM, Bavi P, Al-Mahrouqi RA, Al-Rajhi A, Alkuraya FS, Meyer BF, Al Tassan N (2009) Homozygous mutations in ADAMTS10 and ADAMTS17 cause lenticular myopia, ectopia lentis, glaucoma, spherophakia, and short stature. Am J Hum Genet 85:558–568

    CAS  PubMed  Google Scholar 

  • Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, Gayraud B, Ramirez F, Sakai LY, Dietz HC (2003) Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet 33:407–411

    CAS  PubMed  Google Scholar 

  • Ng CM, Cheng A, Myers LA, Martinez-Murillo F, Jie C, Bedja D, Gabrielson KL, Hausladen JM, Mecham RP, Judge DP, Dietz HC (2004) TGF-beta-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. J Clin Invest 114:1586–1592

    CAS  PubMed  Google Scholar 

  • Nistala H, Lee-Arteaga S, Siciliano G, Smaldone S, Ramirez F (2010a) Extracellular regulation of transforming growth factor beta and bone morphogenetic protein signaling in bone. Ann N Y Acad Sci 1192:253–256

    CAS  PubMed  Google Scholar 

  • Nistala H, Lee-Arteaga S, Smaldone S, Siciliano G, Carta L, Ono RN, Sengle G, Arteaga-Solis E, Levasseur R, Ducy P et al (2010b) Fibrillin-1 and −2 differentially modulate endogenous TGF-beta and BMP bioavailability during bone formation. J Cell Biol 190:1107–1121

    CAS  PubMed  Google Scholar 

  • Ono RN, Sengle G, Charbonneau NL, Carlberg V, Bachinger HP, Sasaki T, Lee-Arteaga S, Zilberberg L, Rifkin DB, Ramirez F et al (2009) Latent transforming growth factor beta-binding proteins and fibulins compete for fibrillin-1 and exhibit exquisite specificities in binding sites. J Biol Chem 284:16872–16881

    CAS  PubMed  Google Scholar 

  • Penttinen C, Saharinen J, Weikkolainen K, Hyytiainen M, Keski-Oja J (2002) Secretion of human latent TGF-beta-binding protein-3 (LTBP-3) is dependent on co-expression of TGF-beta. J Cell Sci 115:3457–3468

    CAS  PubMed  Google Scholar 

  • Pereira L, D’Alessio M, Ramirez F, Lynch JR, Sykes B, Pangilinan T, Bonadio J (1993) Genomic organization of the sequence coding for fibrillin, the defective gene product in Marfan syndrome. Hum Mol Genet 2:961–968

    CAS  PubMed  Google Scholar 

  • Pereira, L, Andrikopoulos, K, Tian, J, Lee, SY, Keene, DR, Ono, R, Reinhardt, DP, Sakai, LY, Biery, NJ, Bunton, T, Dietz, HC, Ramirez, F (1997) Targetting of the gene encoding fibrillin-1 recapitulates the vascular aspect of Marfan syndrome. Nat Genet 17:218–22

    CAS  PubMed  Google Scholar 

  • Pereira L, Lee SY, Gayraud B, Andrikopoulos K, Shapiro SD, Bunton T, Biery NJ, Dietz HC, Sakai LY, Ramirez F (1999) Pathogenetic sequence for aneurysm revealed in mice underexpressing fibrillin-1. Proc Natl Acad Sci U S A 96:3819–3823

    CAS  PubMed  Google Scholar 

  • Pfaff M, Reinhardt DP, Sakai LY, Timpl R (1996) Cell adhesion and integrin binding to recombinant human fibrillin-1. FEBS Lett 384:247–250

    CAS  PubMed  Google Scholar 

  • Piha-Gossack A, Sossin W, Reinhardt DP (2012) The evolution of extracellular fibrillins and their functional domains. PLoS One 7:e33560

    CAS  PubMed  Google Scholar 

  • Prodoehl MJ, Hatzirodos N, Irving-Rodgers HF, Zhao ZZ, Painter JN, Hickey TE, Gibson MA, Rainey WE, Carr BR, Mason HD et al (2009) Genetic and gene expression analyses of the polycystic ovary syndrome candidate gene fibrillin-3 and other fibrillin family members in human ovaries. Mol Hum Reprod 15:829–841

    CAS  PubMed  Google Scholar 

  • Putnam EA, Zhang H, Ramirez F, Milewicz DM (1995) Fibrillin-2 (FBN2) mutations result in the Marfan-like disorder, congenital contractural arachnodactyly. Nat Genet 11:456–458

    CAS  PubMed  Google Scholar 

  • Quondamatteo F, Reinhardt DP, Charbonneau NL, Pophal G, Sakai LY, Herken R (2002) Fibrillin-1 and fibrillin-2 in human embryonic and early fetal development. Matrix Biol 21: 637–646

    CAS  PubMed  Google Scholar 

  • Raghunath M, Putnam EA, Ritty T, Hamstra D, Park ES, Tschodrich-Rotter M, Peters R, Rehemtulla A, Milewicz DM (1999) Carboxy-terminal conversion of profibrillin to fibrillin at a basic site by PACE/furin-like activity required for incorporation in the matrix. J Cell Sci 112(Pt 7):1093–1100

    CAS  PubMed  Google Scholar 

  • Raja-Khan N, Kunselman AR, Demers LM, Ewens KG, Spielman RS, Legro RS (2010) A variant in the fibrillin-3 gene is associated with TGF-beta and inhibin B levels in women with polycystic ovary syndrome. Fertil Steril 94:2916–2919

    CAS  PubMed  Google Scholar 

  • Ramirez F, Rifkin DB (2009) Extracellular microfibrils: contextual platforms for TGFbeta and BMP signaling. Curr Opin Cell Biol 21:616–622

    CAS  PubMed  Google Scholar 

  • Ranz JM, Casals F, Ruiz A (2001) How malleable is the eukaryotic genome? Extreme rate of chromosomal rearrangement in the genus Drosophila. Genome Res 11:230–239

    CAS  PubMed  Google Scholar 

  • Rao Z, Handford P, Mayhew M, Knott V, Brownlee GG, Stuart D (1995) The structure of a Ca(2+)-binding epidermal growth factor-like domain: its role in protein-protein interactions. Cell 82:131–141

    CAS  PubMed  Google Scholar 

  • Reber-Muller S, Spissinger T, Schuchert P, Spring J, Schmid V (1995) An extracellular matrix protein of jellyfish homologous to mammalian fibrillins forms different fibrils depending on the life stage of the animal. Dev Biol 169:662–672

    CAS  PubMed  Google Scholar 

  • Reinhardt DP, Gambee JE, Ono RN, Bachinger HP, Sakai LY (2000) Initial steps in assembly of microfibrils. Formation of disulfide-cross-linked multimers containing fibrillin-1. J Biol Chem 275:2205–2210

    CAS  PubMed  Google Scholar 

  • Reinhardt DP, Keene DR, Corson GM, Poschl E, Bachinger HP, Gambee JE, Sakai LY (1996a) Fibrillin-1: organization in microfibrils and structural properties. J Mol Biol 258:104–116

    CAS  PubMed  Google Scholar 

  • Reinhardt DP, Mechling DE, Boswell BA, Keene DR, Sakai LY, Bachinger HP (1997a) Calcium determines the shape of fibrillin. J Biol Chem 272:7368–7373

    CAS  PubMed  Google Scholar 

  • Reinhardt DP, Ono RN, Sakai LY (1997b) Calcium stabilizes fibrillin-1 against proteolytic degradation. J Biol Chem 272:1231–1236

    CAS  PubMed  Google Scholar 

  • Reinhardt DP, Sasaki T, Dzamba BJ, Keene DR, Chu ML, Gohring W, Timpl R, Sakai LY (1996b) Fibrillin-1 and fibulin-2 interact and are colocalized in some tissues. J Biol Chem 271: 19489–19496

    CAS  PubMed  Google Scholar 

  • Ritty TM, Broekelmann T, Tisdale C, Milewicz DM, Mecham RP (1999) Processing of the fibrillin-1 carboxyl-terminal domain. J Biol Chem 274:8933–8940

    CAS  PubMed  Google Scholar 

  • Ritty TM, Broekelmann TJ, Werneck CC, Mecham RP (2003) Fibrillin-1 and −2 contain heparin-binding sites important for matrix deposition and that support cell attachment. Biochem J 375: 425–432

    CAS  PubMed  Google Scholar 

  • Robertson I, Jensen S, Handford P (2011) TB domain proteins: evolutionary insights into the multifaceted roles of fibrillins and LTBPs. Biochem J 433:263–276

    CAS  PubMed  Google Scholar 

  • Robinson PN, Arteaga-Solis E, Baldock C, Collod-Beroud G, Booms P, De Paepe A, Dietz HC, Guo G, Handford PA, Judge DP et al (2006) The molecular genetics of Marfan syndrome and related disorders. J Med Genet 43:769–787

    CAS  PubMed  Google Scholar 

  • Robinson PN, Godfrey M (2000) The molecular genetics of Marfan syndrome and related microfibrillopathies. J Med Genet 37:9–25

    CAS  PubMed  Google Scholar 

  • Rock MJ, Cain SA, Freeman LJ, Morgan A, Mellody K, Marson A, Shuttleworth CA, Weiss AS, Kielty CM (2004) Molecular basis of elastic fiber formation. Critical interactions and a tropoelastin-fibrillin-1 cross-link. J Biol Chem 279:23748–23758

    CAS  PubMed  Google Scholar 

  • Ross R, Bornstein P (1969) The elastic fiber. I. The separation and partial characterization of its macromolecular components. J Cell Biol 40:366–381

    CAS  PubMed  Google Scholar 

  • Sabatier L, Chen D, Fagotto-Kaufmann C, Hubmacher D, McKee MD, Annis DS, Mosher DF, Reinhardt DP (2009) Fibrillin assembly requires fibronectin. Mol Biol Cell 20:846–858

    CAS  PubMed  Google Scholar 

  • Sabatier L, Miosge N, Hubmacher D, Lin G, Davis EC, Reinhardt DP (2011) Fibrillin-3 expression in human development. Matrix Biol 30:43–52

    CAS  PubMed  Google Scholar 

  • Sage EH, Gray WR (1977) Evolution of elastin structure. Adv Exp Med Biol 79:291–312

    CAS  PubMed  Google Scholar 

  • Saharinen J, Keski-Oja J (2000) Specific sequence motif of 8-Cys repeats of TGF-beta binding proteins, LTBPs, creates a hydrophobic interaction surface for binding of small latent TGF-beta. Mol Biol Cell 11:2691–2704

    CAS  PubMed  Google Scholar 

  • Saharinen J, Taipale J, Keski-Oja J (1996) Association of the small latent transforming growth factor-beta with an eight cysteine repeat of its binding protein LTBP-1. EMBO J 15:245–253

    CAS  PubMed  Google Scholar 

  • Saito M, Kurokawa M, Oda M, Oshima M, Tsutsui K, Kosaka K, Nakao K, Ogawa M, Manabe R, Suda N et al (2011) ADAMTSL6beta protein rescues fibrillin-1 microfibril disorder in a Marfan syndrome mouse model through the promotion of fibrillin-1 assembly. J Biol Chem 286:38602–38613

    CAS  PubMed  Google Scholar 

  • Sakai LY, Keene DR, Engvall E (1986) Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J Cell Biol 103:2499–2509

    CAS  PubMed  Google Scholar 

  • Sakai LY, Keene DR, Glanville RW, Bachinger HP (1991) Purification and partial characterization of fibrillin, a cysteine-rich structural component of connective tissue microfibrils. J Biol Chem 266:14763–14770

    CAS  PubMed  Google Scholar 

  • Sakamoto H, Broekelmann T, Cheresh DA, Ramirez F, Rosenbloom J, Mecham RP (1996) Cell-type specific recognition of RGD- and non-RGD-containing cell binding domains in fibrillin-1. J Biol Chem 271:4916–4922

    CAS  PubMed  Google Scholar 

  • Sarras MP Jr, Madden ME, Zhang XM, Gunwar S, Huff JK, Hudson BG (1991) Extracellular matrix (mesoglea) of Hydra vulgaris. I. Isolation and characterization. Dev Biol 148:481–494

    CAS  PubMed  Google Scholar 

  • Sarras MP Jr, Zhang X, Huff JK, Accavitti MA, St John PL, Abrahamson DR (1993) Extracellular matrix (mesoglea) of Hydra vulgaris III. Formation and function during morphogenesis of hydra cell aggregates. Dev Biol 157:383–398

    PubMed  Google Scholar 

  • Segars JH, DeCherney AH (2010) Is there a genetic basis for polycystic ovary syndrome? J Clin Endocrinol Metabol 95:2058–2060

    CAS  Google Scholar 

  • Sengle G, Charbonneau NL, Ono RN, Sasaki T, Alvarez J, Keene DR, Bachinger HP, Sakai LY (2008a) Targeting of bone morphogenetic protein growth factor complexes to fibrillin. J Biol Chem 283:13874–13888

    CAS  PubMed  Google Scholar 

  • Sengle G, Ono RN, Lyons KM, Bachinger HP, Sakai LY (2008b) A new model for growth factor activation: type II receptors compete with the prodomain for BMP-7. J Mol Biol 381: 1025–1039

    CAS  PubMed  Google Scholar 

  • Sengle G, Ono RN, Sasaki T, Sakai LY (2011) Prodomains of transforming growth factor beta (TGFbeta) superfamily members specify different functions: extracellular matrix interactions and growth factor bioavailability. J Biol Chem 286:5087–5099

    CAS  PubMed  Google Scholar 

  • Sengle G, Tsutsui K, Keene DR, Tufa SF, Carlson EJ, Charbonneau NL, Ono RN, Sasaki T, Wirtz MK, Samples JR et al (2012) Microenvironmental regulation by fibrillin-1. PLoS Genet 8:e1002425

    CAS  PubMed  Google Scholar 

  • Shimizu H, Zhang X, Zhang J, Leontovich A, Fei K, Yan L, Sarras MP Jr (2002) Epithelial morphogenesis in hydra requires de novo expression of extracellular matrix components and matrix metalloproteinases. Development 129:1521–1532

    CAS  PubMed  Google Scholar 

  • Smallridge RS, Whiteman P, Doering K, Handford PA, Downing AK (1999) EGF-like domain calcium affinity modulated by N-terminal domain linkage in human fibrillin-1. J Mol Biol 286:661–668

    CAS  PubMed  Google Scholar 

  • Smallridge RS, Whiteman P, Werner JM, Campbell ID, Handford PA, Downing AK (2003) Solution structure and dynamics of a calcium binding epidermal growth factor-like domain pair from the neonatal region of human fibrillin-1. J Biol Chem 278:12199–12206

    CAS  PubMed  Google Scholar 

  • Stheneur C, Faivre L, Collod-Beroud G, Gautier E, Binquet C, Bonithon-Kopp C, Claustres M, Child AH, Arbustini E, Ades LC et al (2011) Prognosis factors in probands with an FBN1 mutation diagnosed before the age of 1 year. Pediatr Res 69:265–270

    PubMed  Google Scholar 

  • Suk JY, Jensen S, McGettrick A, Willis AC, Whiteman P, Redfield C, Handford PA (2004) Structural consequences of cysteine substitutions C1977Y and C1977R in calcium-binding epidermal growth factor-like domain 30 of human fibrillin-1. J Biol Chem 279:51258–51265

    CAS  PubMed  Google Scholar 

  • Thurmond F, Trotter J (1996) Morphology and biomechanics of the microfibrillar network of sea cucumber dermis. J Exp Biol 199:1817–1828

    PubMed  Google Scholar 

  • Tiecke F, Katzke S, Booms P, Robinson PN, Neumann L, Godfrey M, Mathews KR, Scheuner M, Hinkel GK, Brenner RE et al (2001) Classic, atypically severe and neonatal Marfan syndrome: twelve mutations and genotype-phenotype correlations in FBN1 exons 24–40. Eur J Hum Genet 9:13–21

    CAS  PubMed  Google Scholar 

  • Tiedemann K, Batge B, Muller PK, Reinhardt DP (2001) Interactions of fibrillin-1 with heparin/heparan sulfate, implications for microfibrillar assembly. J Biol Chem 276:36035–36042

    CAS  PubMed  Google Scholar 

  • Tiedemann K, Sasaki T, Gustafsson E, Gohring W, Batge B, Notbohm H, Timpl R, Wedel T, Schlotzer-Schrehardt U, Reinhardt DP (2005) Microfibrils at basement membrane zones interact with perlecan via fibrillin-1. J Biol Chem 280:11404–11412

    CAS  PubMed  Google Scholar 

  • Trask TM, Ritty TM, Broekelmann T, Tisdale C, Mecham RP (1999) N-terminal domains of fibrillin 1 and fibrillin 2 direct the formation of homodimers: a possible first step in microfibril assembly. Biochem J 340(Pt 3):693–701

    CAS  PubMed  Google Scholar 

  • Trask TM, Trask BC, Ritty TM, Abrams WR, Rosenbloom J, Mecham RP (2000) Interaction of tropoelastin with the amino-terminal domains of fibrillin-1 and fibrillin-2 suggests a role for the fibrillins in elastic fiber assembly. J Biol Chem 275:24400–24406

    CAS  PubMed  Google Scholar 

  • Tsuruga E, Sato A, Ueki T, Nakashima K, Nakatomi Y, Ishikawa H, Yajima T, Sawa Y (2009) Integrin alphavbeta3 regulates microfibril assembly in human periodontal ligament cells. Tissue Cell 41:85–89

    CAS  PubMed  Google Scholar 

  • Tsutsui K, Manabe R, Yamada T, Nakano I, Oguri Y, Keene DR, Sengle G, Sakai LY, Sekiguchi K (2010) ADAMTSL-6 is a novel extracellular matrix protein that binds to fibrillin-1 and promotes fibrillin-1 fibril formation. J Biol Chem 285:4870–4882

    CAS  PubMed  Google Scholar 

  • Unsold C, Hyytiainen M, Bruckner-Tuderman L, Keski-Oja J (2001) Latent TGF-beta binding protein LTBP-1 contains three potential extracellular matrix interacting domains. J Cell Sci 114:187–197

    CAS  PubMed  Google Scholar 

  • Urbanek M, Sam S, Legro RS, Dunaif A (2007) Identification of a polycystic ovary syndrome susceptibility variant in fibrillin-3 and association with a metabolic phenotype. J Clin Endocrinol Metabol 92:4191–4198

    CAS  Google Scholar 

  • Wallis DD, Putnam EA, Cretoiu JS, Carmical SG, Cao SN, Thomas G, Milewicz DM (2003) Profibrillin-1 maturation by human dermal fibroblasts: proteolytic processing and molecular chaperones. J Cell Biochem 90:641–652

    CAS  PubMed  Google Scholar 

  • Wang MC, Lu Y, Baldock C (2009) Fibrillin microfibrils: a key role for the interbead region in elasticity. J Mol Biol 388:168–179

    CAS  PubMed  Google Scholar 

  • Werner JM, Knott V, Handford PA, Campbell ID, Downing AK (2000) Backbone dynamics of a cbEGF domain pair in the presence of calcium. J Mol Biol 296:1065–1078

    CAS  PubMed  Google Scholar 

  • Wess TJ, Purslow PP, Sherratt MJ, Ashworth J, Shuttleworth CA, Kielty CM (1998) Calcium determines the supramolecular organization of fibrillin-rich microfibrils. J Cell Biol 141: 829–837

    CAS  PubMed  Google Scholar 

  • Yalamanchi SK, Sam S, Cardenas MO, Holaday LW, Urbanek M, Dunaif A (2012) Association of fibrillin-3 and transcription factor-7-like 2 gene variants with metabolic phenotypes in PCOS. Obesity 20(6):1273–1278

    CAS  PubMed  Google Scholar 

  • Yuan X, Downing AK, Knott V, Handford PA (1997) Solution structure of the transforming growth factor beta-binding protein-like module, a domain associated with matrix fibrils. EMBO J 16:6659–6666

    CAS  PubMed  Google Scholar 

  • Yuan X, Werner JM, Lack J, Knott V, Handford PA, Campbell ID, Downing AK (2002) Effects of the N2144S mutation on backbone dynamics of a TB-cbEGF domain pair from human fibrillin-1. J Mol Biol 316:113–125

    CAS  PubMed  Google Scholar 

  • Zhang H, Hu W, Ramirez F (1995) Developmental expression of fibrillin genes suggests heterogeneity of extracellular microfibrils. J Cell Biol 129:1165–1176

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the Wellcome Trust (grant no. 086613), Arthritis Research UK (grant no. 19810) and the BBSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penny Handford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jensen, S., Yadin, D., Robertson, I., Handford, P. (2013). Evolutionary Insights into Fibrillin Structure and Function in the Extracellular Matrix. In: Keeley, F., Mecham, R. (eds) Evolution of Extracellular Matrix. Biology of Extracellular Matrix. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36002-2_5

Download citation

Publish with us

Policies and ethics