Skip to main content

Organic Thin-Film Transistors Based on Vacuum-Deposited Small-Molecule Semiconductors

Handbook of Visual Display Technology
  • 40 Accesses

Abstract

Thin-film transistors (TFTs) based on vacuum-deposited small-molecule organic semiconductors can usually be fabricated at temperatures below about 100 °C and thus on a variety of unconventional substrates, such as flexible plastics and paper. Organic TFTs are therefore a potential alternative to TFTs based on hydrogenated amorphous silicon (a-Si:H), low-temperature polycrystalline silicon (LTPS) and metal oxides for flexible active-matrix displays. This chapter provides a brief overview of some important aspects of organic TFTs based on vacuum-deposited small-molecule semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AFM:

Atomic force microscopy

DNTT:

Dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene

HOMO:

Highest occupied molecular orbital

LUMO:

Lowest unoccupied molecular orbital

MTR:

Multiple trapping and release

PEN:

Polyethylene naphthalate

TFT:

Thin-film transistor

References

  • Borchert JW, Peng B, Letzkus F, Burghartz JN, Chan PKL, Zojer K, Ludwigs S, Klauk H (2019) Small contact resistance and high-frequency operation of flexible low-voltage inverted coplanar organic transistors. Nat Commun 10:1119

    Article  Google Scholar 

  • Borchert JW, Zschieschang U, Letzkus F, Giorgio M, Weitz RT, Caironi M, Burghartz JN, Ludwigs S, Klauk H (2020) Flexible low-voltage high-frequency organic thin-film transistors. Sci Adv 6:eaaz5156

    Article  Google Scholar 

  • Chang Y-C, Kuo M-Y, Chen C-P, Lu H-F, Chao I (2010) On the air stability of n-channel organic field-effect transistors: a theoretical study of adiabatic electron affinities of organic semiconductors. J Phys Chem C 114:11595

    Article  Google Scholar 

  • De Angelis F, Gaspari M, Procopio A, Cuda G, Di Fabrizio E (2009) Direct mass spectrometry investigation on pentacene thin film oxidation upon exposure to air. Chem Phys Lett 468:193

    Article  Google Scholar 

  • Gundlach DJ, Lin YY, Jackson TN, Nelson SF, Schlom DG (1997) Pentacene organic thin film transistors – molecular ordering and mobility. IEEE Electr Dev Lett 18:87

    Article  Google Scholar 

  • Hahn L, Maaß F, Bleith T, Zschieschang U, Wadepohl H, Klauk H, Tegeder P, Gade LH (2015) Core halogenation as a construction principle in tuning the material properties of tetraazaperopyrenes. Chem Eur J 21:17691

    Article  Google Scholar 

  • Han CY, Lai PT, Tang WM (2021) High-performance pentacene organic thin-film transistor based on room-temperature-processed Hf0.13La0.87O as gate dielectric. IEEE Electr Dev Lett 42:339

    Article  Google Scholar 

  • Horowitz G, Hajlaoui R, Delannoy P (1995) Temperature dependence of the field-effect mobility of sexithiophene. Determination of the density of traps. J Phys III France 5:355

    Article  Google Scholar 

  • Hultell M, Stafström S (2006) Polaron dynamics in highly ordered molecular crystals. Chem Phys Lett 428:446

    Article  Google Scholar 

  • Jia X, Fuentes-Hernandez C, Wang C-Y, Park Y, Kippelen B (2018) Stable organic thin-film transistors. Sci Adv 4:eaao1705

    Article  Google Scholar 

  • Jones BA, Ahrens MJ, Yoon MH, Facchetti A, Marks TJ, Wasielewski MR (2004) High-mobility air-stable n-type semiconductors with processing versatility: dicyanoperylene-3,4:9,10-bis(dicarboximides). Angew Chem Int Ed 43:6363

    Article  Google Scholar 

  • Jurchescu OD, Popinciuc M, van Wees BJ, Palstra TTM (2007) Interface-controlled, high-mobility organic transistors. Adv Mater 19:688

    Article  Google Scholar 

  • Ke TH, Müller R, Kama B, Rockele M, Chasin A, Myny K, Steudel S, Oosterbaan WD, Lutsen L, Genoe J, van Leuken L, van der Putten B, Heremans P (2014) Scaling down of organic complementary logic gates for compact logic on foil. Org Electron 15:1229

    Article  Google Scholar 

  • Kim C, Facchetti A, Marks TJ (2009) Probing the surface glass transition temperature of polymer films via organic semiconductor growth mode, microstructure, and thin-film transistor response. J Am Chem Soc 131:9122

    Article  Google Scholar 

  • Kraft U, Sejfic M, Kang MJ, Takimiya K, Zaki T, Letzkus F, Burghartz JN, Weber E, Klauk H (2015) Flexible low-voltage organic complementary circuits: finding the optimum combination of semiconductors and monolayer gate dielectrics. Adv Mater 27:207

    Article  Google Scholar 

  • Lunt RR, Lassiter BE, Benziger JB, Forrest SR (2009) Organic vapor phase deposition for the growth of large area organic electronic devices. Appl Phys Lett 95:233305

    Article  Google Scholar 

  • Meyer zu Heringdorf FJ, Reuter MC, Tromp RM (2001) Growth dynamics of pentacene thin films. Nature 412:517

    Article  Google Scholar 

  • Noda M, Kobayashi N, Katsuhara M, Yumoto A, Ushikura S, Yasuda R, Hirai N, Yukawa G, Yagi I, Nomoto K, Urabe T (2011) An OTFT-driven rollable OLED display. J Soc Inf Disp 19:316

    Article  Google Scholar 

  • Oh JH, Suraru S-L, Lee W-Y, Könemann M, Höffken HW, Röger C, Schmidt R, Chung Y, Chen W-C, Würthner F, Bao Z (2010) High-performance air-stable n-type organic transistors based on core-chlorinated naphthalene tetracarboxylic diimides. Adv Funct Mater 20:2148

    Article  Google Scholar 

  • Okamoto T, Kumagai S, Fukuzaki E, Ishii H, Watanabe G, Niitsu N, Annaka T, Yamagishi M, Tani Y, Sugiura H, Watanabe T, Watanabe S, Takeya J (2020) Robust, high-performance n-type organic semiconductors. Sci Adv 6:eaaz0632

    Article  Google Scholar 

  • Schiefer S, Huth M, Dobrinevski A, Nickel B (2007) Determination of the crystal structure of substrate-induced pentacene polymorphs in fiber structured thin films. J Am Chem Soc 129:10316

    Article  Google Scholar 

  • Sirringhaus H (2009) Reliability of organic field-effect transistors. Adv Mater 21:3859

    Article  Google Scholar 

  • Takimiya K, Kunugi Y, Otsubo T (2007) Development of new semiconducting materials for durable high-performance air-stable organic field-effect transistors. Chem Lett 36:578

    Article  Google Scholar 

  • Troisi A, Orlandi G (2005) Band structure of the four pentacene polymorphs and effect on the hole mobility at low temperature. J Phys Chem B 109:1849

    Article  Google Scholar 

  • Warta W, Karl N (1985) Hot holes in naphthalene: high, electric-field dependent mobilities. Phys Rev B 32:1172

    Article  Google Scholar 

  • Zaki T, Ante F, Zschieschang Z, Butschke J, Letzkus F, Richter H, Klauk H, Burghartz JN (2012) A 3.3 V 6-bit 100 kS/s current-steering digital-to-analog converter using organic p-type thin-film transistors on glass. IEEE J Solid State Circuits 47:292

    Article  Google Scholar 

  • Zojer K, Zojer E, Fernandez AF, Gruber M (2015) Impact of the capacitance of the dielectric on the contact resistance of organic thin-film transistors. Phys Rev Appl 4:044002

    Article  Google Scholar 

  • Zschieschang U, Klauk H (2019) Organic transistors on paper: a brief review. J Mater Chem C 7:5522

    Article  Google Scholar 

  • Zschieschang U, Ante F, Kälblein D, Yamamoto T, Takimiya K, Kuwabara H, Ikeda M, Sekitani T, Someya T, Blochwitz-Nimoth J, Klauk H (2011) Dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT) thin-film transistors with improved performance and stability. Org Electron 12:1370

    Article  Google Scholar 

  • Zschieschang U, Hofmockel R, Rödel R, Kraft U, Kang MJ, Takimiya K, Zaki T, Letzkus F, Butschke J, Richter H, Burghartz JN, Klauk H (2013) Megahertz operation of flexible low-voltage organic thin-film transistors. Org. Electron 14:1516

    Article  Google Scholar 

  • Zschieschang U, Borchert JW, Geiger M, Letzkus F, Burghartz JN, Klauk H (2018) Stencil lithography for organic thin-film transistors with a channel length of 300 nm. Org Electron 61:65

    Article  Google Scholar 

Further Reading

  • Bao Z, Locklin J (eds) (2007) Organic field-effect transistors. CRC Press

    Google Scholar 

  • Klauk H (ed) (2006) Organic electronics. Materials, manufacturing and applications. Wiley-VCH, Organic electronics II. More materials and applications. Wiley-VCH (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hagen Klauk .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Klauk, H. (2023). Organic Thin-Film Transistors Based on Vacuum-Deposited Small-Molecule Semiconductors. In: Blankenbach, K., Yan, Q., O'Brien, R.J. (eds) Handbook of Visual Display Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35947-7_49-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35947-7_49-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35947-7

  • Online ISBN: 978-3-642-35947-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Organic Thin-Film Transistors Based on Vacuum-Deposited Small-Molecule Semiconductors
    Published:
    26 May 2023

    DOI: https://doi.org/10.1007/978-3-642-35947-7_49-3

  2. Original

    Organic TFTs: Vacuum-Deposited Small-Molecule Semiconductors
    Published:
    05 March 2015

    DOI: https://doi.org/10.1007/978-3-642-35947-7_49-2