Skip to main content

Algorithms and Almost Tight Results for 3-Colorability of Small Diameter Graphs

  • Conference paper
SOFSEM 2013: Theory and Practice of Computer Science (SOFSEM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7741))

Abstract

The 3-coloring problem is well known to be NP-complete. It is also well known that it remains NP-complete when the input is restricted to graphs with diameter 4. Moreover, assuming the Exponential Time Hypothesis (ETH), 3-coloring can not be solved in time 2o(n) on graphs with n vertices and diameter at most 4. In spite of the extensive studies of the 3-coloring problem with respect to several basic parameters, the complexity status of this problem on graphs with small diameter, i.e. with diameter at most 2, or at most 3, has been a longstanding and challenging open question. In this paper we investigate graphs with small diameter. For graphs with diameter at most 2, we provide the first subexponential algorithm for 3-coloring, with complexity \(2^{O(\sqrt{n\log n})}\). Furthermore we present a subclass of graphs with diameter 2 that admits a polynomial algorithm for 3-coloring. For graphs with diameter at most 3, we establish the complexity of 3-coloring, even for the case of triangle-free graphs. Namely we prove that for every \({\varepsilon \in \lbrack 0,1)}\), 3-coloring is NP-complete on triangle-free graphs of diameter 3 and radius 2 with n vertices and minimum degree δ = Θ(n ε). Moreover, assuming ETH, we use three different amplification techniques of our hardness results, in order to obtain for every \({\varepsilon \in \lbrack 0,1)}\) subexponential asymptotic lower bounds for the complexity of 3-coloring on triangle-free graphs with diameter 3 and minimum degree δ = Θ(n ε). Finally, we provide a 3-coloring algorithm with running time \({2^{O(\min \{\delta \Delta ,\ \frac{n}{\delta }\log \delta \})}}\) for arbitrary graphs with diameter 3, where n is the number of vertices and δ (resp. Δ) is the minimum (resp. maximum) degree of the input graph. To the best of our knowledge, this algorithm is the first subexponential algorithm for graphs with δ = ω(1) and for graphs with δ = O(1) and Δ = o(n). Due to the above lower bounds of the complexity of 3-coloring, the running time of this algorithm is asymptotically almost tight when the minimum degree of the input graph is δ = Θ(n ε), where \(\varepsilon \in \lbrack \frac{1}{2},1)\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N.: Transversal numbers of uniform hypergraphs. Graphs and Combinatorics 6, 1–4 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Spencer, J.H.: The Probabilistic Method, 3rd edn. John Wiley & Sons (2008)

    Google Scholar 

  3. Babai, L., Luks, E.M.: Canonical labeling of graphs. In: Proceedings of the 15th Annual ACM Symposium on Theory of Computing (STOC), pp. 171–183 (1983)

    Google Scholar 

  4. Beigel, R., Eppstein, D.: 3-coloring in time O(1.3289n). Journal of Algorithms 54(2), 168–204 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bodirsky, M., Kára, J., Martin, B.: The complexity of surjective homomorphism problems – A survey. CoRR (2011), http://arxiv.org/abs/1104.5257

  6. Bollobás, B.: The diameter of random graphs. Transactions of the American Mathematical Society 267(1), 41–52 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Broersma, H., Fomin, F.V., Golovach, P.A., Paulusma, D.: Three complexity results on coloring P k -free graphs. In: Proceedings of the 20th International Workshop on Combinatorial Algorithms, pp. 95–104 (2009)

    Google Scholar 

  8. Courcelle, B.: The monadic second-order logic of graphs I: Recognizable sets of finite graphs. Information and Computation 85(1), 12–75 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fomin, F.V., Kratsch, D.: Exact exponential algorithms. Texts in Theoretical Computer Science. An EATCS Series. Springer (2010)

    Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of NP-completeness. W.H. Freeman (1979)

    Google Scholar 

  11. Grötschel, M., Lovász, L., Schrijver, A.: Polynomial algorithms for perfect graphs. Topics on Perfect Graphs 88, 325–356 (1984)

    Article  Google Scholar 

  12. Hoàng, C.T., Kamiński, M., Lozin, V.V., Sawada, J., Shu, X.: Deciding k-colorability of P 5-free graphs in polynomial time. Algorithmica 57(1), 74–81 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Holyer, I.: The NP-completeness of edge-coloring. SIAM Journal on Computing 10, 718–720 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. Journal of Computer and System Sciences 62(2), 367–375 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? Journal of Computer and System Sciences 63(4), 512–530 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kamiński, M.: Open problems from algorithmic graph theory. In: 7th Slovenian International Conference on Graph Theory (2011), http://rutcor.rutgers.edu/~mkaminski/AGT/openproblemsAGT.pdf

  17. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the Exponential Time Hypothesis. Bulletin of the EATCS 84, 41–71 (2011)

    MathSciNet  Google Scholar 

  18. Maffray, F., Preissmann, M.: On the NP-completeness of the k-colorability problem for triangle-free graphs. Discrete Mathematics 162, 313–317 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mertzios, G.B., Spirakis, P.G.: Algorithms and almost tight results for 3-colorability of small diameter graphs. CoRR (2012), http://arxiv.org/abs/1202.4665

  20. Narayanaswamy, N., Subramanian, C.: Dominating set based exact algorithms for 3-coloring. Information Processing Letters 111, 251–255 (2011)

    Article  MathSciNet  Google Scholar 

  21. Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1994)

    Google Scholar 

  22. Randerath, B., Schiermeyer, I.: 3-colorability ∈ P for P 6-free graphs. Discrete Applied Mathematics 136(2-3), 299–313 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Stacho, J.: 3-colouring AT-free graphs in polynomial time. Algorithmica (to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mertzios, G.B., Spirakis, P.G. (2013). Algorithms and Almost Tight Results for 3-Colorability of Small Diameter Graphs. In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds) SOFSEM 2013: Theory and Practice of Computer Science. SOFSEM 2013. Lecture Notes in Computer Science, vol 7741. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35843-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35843-2_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35842-5

  • Online ISBN: 978-3-642-35843-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics