Skip to main content

A Note on Extensions: Admissible Rules via Semantics

  • Conference paper
Logical Foundations of Computer Science (LFCS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7734))

Included in the following conference series:

Abstract

Any intermediate logic with the disjunction property admits the Visser rules if and only if it has the extension property. This equivalence restricts nicely to the extension property up to n. In this paper we demonstrate that the same goes even when omitting the rule ex falso quod libet, that is, working over minimal rather than intuitionistic logic. We lay the groundwork for providing a basis of admissibility for minimal logic, and tie the admissibility of the Mints–Skura rule to the extension property in a stratified manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aczel, P.H.: Saturated Intuitionistic Theories. In: Arnold Schmidt, H., Schutte, K., Thiele, H.J. (eds.) Contributions to Mathematical Logic Proceedings of the Logic Colloquium, Hannover 1966. Studies in Logic and the Foundations of Mathematics, vol. 50, pp. 1–11. Elsevier (1968)

    Google Scholar 

  2. Chagrov, A., Zakharyashchev, M.: The Disjunction Property of Intermediate Propositional Logics. Studia Logica 50(2), 189–216 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cintula, P., Metcalfe, G.: Admissible rules in the implication-negation fragment of intuitionistic logic. Annals of Pure and Applied Logic 162(2), 162–171 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Citkin, A.: A note on admissible rules and the disjunction property in intermediate logics. Archive for Mathematical Logic 51, 1–14 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Došen, K.: Sequent-systems and groupoid models. II. Studia Logica 48(1), 41–65 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dzik, W.: Remarks on projective unifiers. Bulletin of the Section of Logic 40(1), 37–45 (2011)

    MathSciNet  Google Scholar 

  7. Friedman, H.: One Hundred and Two Problems in Mathematical Logic. The Journal of Symbolic Logic 40(2), 113–129 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gabbay, D.M., de Jongh, D.H.: A Sequence of Decidable Finitely Axiomatizable Intermediate Logics with the Disjunction Property. The Journal of Symbolic Logic 39(1), 67–78 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ghilardi, S.: Unification through Projectivity. Journal of Logic and Computation 7(6), 733–752 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ghilardi, S.: Unification in Intuitionistic Logic. The Journal of Symbolic Logic 64(2), 859–880 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goudsmit, J.P., Iemhoff, R.: On unification and admissible rules in Gabbay-de Jongh logics. Logic Group Preprint Series 297, 1–18 (2012)

    Google Scholar 

  12. Iemhoff, R.: A(nother) characterization of intuitionistic propositional logic. Annals of Pure and Applied Logic 113(1-3), 161–173 (2001); First St. Petersburg Conference on Days of Logic and Computability

    Article  MathSciNet  Google Scholar 

  13. Iemhoff, R.: On the Admissible Rules of Intuitionistic Propositional Logic. The Journal of Symbolic Logic 66(1), 281–294 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Iemhoff, R.: Intermediate Logics and Visser’s Rules. Notre Dame Journal of Formal Logic 46(1), 65–81 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Iemhoff, R., Metcalfe, G.: Hypersequent Systems for the Admissible Rules of Modal and Intermediate Logics. In: Artemov, S., Nerode, A. (eds.) LFCS 2009. LNCS, vol. 5407, pp. 230–245. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Iemhoff, R., Metcalfe, G.: Proof theory for admissible rules. Annals of Pure and Applied Logic 159(1-2), 171–186 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jeřábek, E.: Admissible Rules of Modal Logics. Journal of Logic and Computation 15(4), 411–431 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Johansson, I.: Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus. Compositio Mathematica 4, 119–136 (1937)

    MathSciNet  Google Scholar 

  19. Johnstone, P.T.: Stone Spaces. Cambridge studies in advanced mathematics, vol. 3. Cambridge University Press (1982)

    Google Scholar 

  20. Lorenzen, P.: Einführung in die operative Logik und Mathematik. In: Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, vol. 78. Springer (1955)

    Google Scholar 

  21. Maksimova, L.L.: On Maximal Intermediate Logics with the Disjunction Property. Studia Logica: An International Journal for Symbolic Logic 45(1), 69–75 (1986)

    MathSciNet  MATH  Google Scholar 

  22. Mints, G.E.: Derivability of admissible rules. Journal of Mathematical Sciences 6, 417–421 (1976)

    Article  MATH  Google Scholar 

  23. Odintsov, S., Rybakov, V.V.: Unification and Admissible rules for paraconsistent minimal Johanssons’ logic J and positive intuitionistic logic IPC+. Submitted to Annals of Pure and Applied Logic (February 2012)

    Google Scholar 

  24. Rozière, P.: Règles admissibles en calcul propositionnel intuitionniste. Ph.D. thesis, Université de Paris VII (1992)

    Google Scholar 

  25. Rybakov, V.V.: A criterion for admissibility of rules in the model system S4 and the intuitionistic logic. Algebra and Logic 23, 369–384 (1984)

    Article  MATH  Google Scholar 

  26. Rybakov, V.V.: Admissibility of Logical Inference Rules. Studies in Logic and the Foundations of Mathematics, vol. 136. Elsevier (1997)

    Google Scholar 

  27. Skura, T.: A complete syntactical characterization of the intuitionistic logic. Reports on Mathematical Logic 23, 75–80 (1989)

    MathSciNet  MATH  Google Scholar 

  28. Smoryński, C.: Applications of Kripke models. In: Troelstra, A.S. (ed.) Metamathematical Investigation of Intuitionistic Arithmetic and Analysis. Lecture Notes in Mathematics, vol. 344, pp. 324–391. Springer, Heidelberg (1973)

    Chapter  Google Scholar 

  29. Troelstra, A.S., van Dalen, D.: Logic. In: Constructivism in Mathematics - An Introduction. Studies in Logic and the Foundations of Mathematics, vol. 121, pp. 35–111. Elsevier (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goudsmit, J. (2013). A Note on Extensions: Admissible Rules via Semantics. In: Artemov, S., Nerode, A. (eds) Logical Foundations of Computer Science. LFCS 2013. Lecture Notes in Computer Science, vol 7734. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35722-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35722-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35721-3

  • Online ISBN: 978-3-642-35722-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics