Skip to main content

A Scalable Byzantine Grid

  • Conference paper
Distributed Computing and Networking (ICDCN 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7730))

Included in the following conference series:

Abstract

Modern networks assemble an ever growing number of nodes. However, it remains difficult to increase the number of channels per node, thus the maximal degree of the network may be bounded. This is typically the case in grid topology networks, where each node has at most four neighbors. In this paper, we address the following issue: if each node is likely to fail in an unpredictable manner, how can we preserve some global reliability guarantees when the number of nodes keeps increasing unboundedly ?

To be more specific, we consider the problem or reliably broadcasting information on an asynchronous grid in the presence of Byzantine failures – that is, some nodes may have an arbitrary and potentially malicious behavior. Our requirement is that a constant fraction of correct nodes remain able to achieve reliable communication. Existing solutions can only tolerate a fixed number of Byzantine failures if they adopt a worst-case placement scheme. Besides, if we assume a constant Byzantine ratio (each node has the same probability to be Byzantine), the probability to have a fatal placement approaches 1 when the number of nodes increases, and reliability guarantees collapse.

In this paper, we propose the first broadcast protocol that overcomes these difficulties. First, the number of Byzantine failures that can be tolerated (if they adopt the worst-case placement) now increases with the number of nodes. Second, we are able to tolerate a constant Byzantine ratio, however large the grid may be. In other words, the grid becomes scalable. This result has important security applications in ultra-large networks, where each node has a given probability to misbehave.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and Advanced Topics. McGraw-Hill Publishing Company, New York (1998)

    Google Scholar 

  2. Bhandari, V., Vaidya, N.H.: On reliable broadcast in a radio network. In: Aguilera, M.K., Aspnes, J. (eds.) PODC, pp. 138–147. ACM (2005)

    Google Scholar 

  3. Castro, M., Liskov, B.: Practical byzantine fault tolerance. Theoretical Computer Science TCS 243(12), 363–389 (2000)

    Google Scholar 

  4. Dolev, D.: The Byzantine generals strike again. Journal of Algorithms 3(1), 14–30 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Drabkin, V., Friedman, R., Segal, M.: Efficient byzantine broadcast in wireless ad-hoc networks. In: DSN, pp. 160–169. IEEE Computer Society (2005)

    Google Scholar 

  6. Dubois, S., Masuzawa, T., Tixeuil, S.: The Impact of Topology on Byzantine Containment in Stabilization. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 495–509. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Dubois, S., Masuzawa, T., Tixeuil, S.: On Byzantine Containment Properties of the min + 1 Protocol. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 96–110. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Dubois, S., Masuzawa, T., Tixeuil, S.: Bounding the impact of unbounded attacks in stabilization. IEEE Transactions on Parallel and Distributed Systems, TPDS (2011)

    Google Scholar 

  9. Dubois, S., Masuzawa, T., Tixeuil, S.: Maximum Metric Spanning Tree Made Byzantine Tolerant. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 150–164. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Koo, C.-Y.: Broadcast in radio networks tolerating byzantine adversarial behavior. In: Chaudhuri, S., Kutten, S. (eds.) PODC, pp. 275–282. ACM (2004)

    Google Scholar 

  11. Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

    Article  MATH  Google Scholar 

  12. Malkhi, D., Mansour, Y., Reiter, M.K.: Diffusion without false rumors: on propagating updates in a Byzantine environment. Theoretical Computer Science 299(1-3), 289–306 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Malkhi, D., Reiter, M., Rodeh, O., Sella, Y.: Efficient update diffusion in byzantine environments. In: The 20th IEEE Symposium on Reliable Distributed Systems (SRDS 2001), Washington, Brussels, Tokyo, pp. 90–98. IEEE (2001)

    Google Scholar 

  14. Masuzawa, T., Tixeuil, S.: Bounding the Impact of Unbounded Attacks in Stabilization. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 440–453. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Masuzawa, T., Tixeuil, S.: Stabilizing link-coloration of arbitrary networks with unbounded byzantine faults. International Journal of Principles and Applications of Information Science and Technology (PAIST) 1(1), 1–13 (2007)

    Google Scholar 

  16. Maurer, A., Tixeuil, S.: Limiting byzantine influence in multihop asynchronous networks. In: IEEE International Conference on Distributed Computing Systems, ICDCS (2012)

    Google Scholar 

  17. Minsky, Y., Schneider, F.B.: Tolerating malicious gossip. Distributed Computing 16(1), 49–68 (2003)

    Article  Google Scholar 

  18. Nesterenko, M., Arora, A.: Tolerance to unbounded byzantine faults. In: 21st Symposium on Reliable Distributed Systems (SRDS 2002), pp. 22–29. IEEE Computer Society (2002)

    Google Scholar 

  19. Nesterenko, M., Tixeuil, S.: Discovering network topology in the presence of byzantine nodes. IEEE Transactions on Parallel and Distributed Systems (TPDS) 20(12), 1777–1789 (2009)

    Article  Google Scholar 

  20. Pelc, A., Peleg, D.: Broadcasting with locally bounded byzantine faults. Inf. Process. Lett. 93(3), 109–115 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sakurai, Y., Ooshita, F., Masuzawa, T.: A Self-stabilizing Link-Coloring Protocol Resilient to Byzantine Faults in Tree Networks. In: Higashino, T. (ed.) OPODIS 2004. LNCS, vol. 3544, pp. 283–298. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maurer, A., Tixeuil, S. (2013). A Scalable Byzantine Grid. In: Frey, D., Raynal, M., Sarkar, S., Shyamasundar, R.K., Sinha, P. (eds) Distributed Computing and Networking. ICDCN 2013. Lecture Notes in Computer Science, vol 7730. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35668-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35668-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35667-4

  • Online ISBN: 978-3-642-35668-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics