Skip to main content

Electromagnetic Unidirectionality in Magnetic Photonic Crystals

  • Chapter
Magnetophotonics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 178))

  • 1755 Accesses

Abstract

Magnetization, either spontaneous or field-induced, is always associated with nonreciprocal circular birefringence which breaks the reciprocity principle and qualitatively changes electrodynamics of medium. In magnetic photonic crystals and other periodic structures involving magnetic components, broken reciprocity can result in electromagnetic unidirectionality, when the traveling waves can only propagate in one the two opposite directions. The unidirectional wave propagation can only occur if both time reversal and space inversion symmetries of the periodic structure are broken. During the last decade there have been numerous publications devoted to this kind of phenomenon. Our goal is to present some of those ideas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Landau, E. Lifshitz, L. Pitaevskii, Electrodynamics of continuous media (Pergamon, New York, 1984)

    Google Scholar 

  2. A. Figotin, I. Vitebskiy, Phys. Rev. B 63, 066609 (2001)

    Article  CAS  Google Scholar 

  3. A. Figotin, I. Vitebskiy, Phys. Rev. B 67, 165210 (2003)

    Article  Google Scholar 

  4. S. Raghu, F. Haldane, arXiv:cond-mat/0602501v3

  5. F. Haldane, S. Raghu, Phys. Rev. Lett. 100, 013904 (2008)

    Article  CAS  Google Scholar 

  6. Z. Wang, Y. Chong, J. Joannopoulos, M. Soljac, Phys. Rev. Lett. 100, 013905 (2008)

    Article  Google Scholar 

  7. Z. Yu, G. Veronis, Z. Wang, S. Fan, Phys. Rev. Lett. 100, 023902 (2008)

    Article  Google Scholar 

  8. Z. Wang, Y. Chong, J. Joannopoulos, M. Soljacic, Nature 461, 772 (2009)

    Article  CAS  Google Scholar 

  9. E. Yablonovitch, Nature 461, 744 (2009)

    Article  CAS  Google Scholar 

  10. I. Vitebsky, J. Edelkind, E. Bogachek, U. Landman, Phys. Rev. B 55, 12566 (1997)

    Article  CAS  Google Scholar 

  11. H. How, C. Vittoria, Phys. Rev. B 39, 6823 (1989)

    Article  Google Scholar 

  12. H. How, C. Vittoria, Phys. Rev. B 39, 66331 (1989)

    Google Scholar 

  13. A. Freeman, H. Schmid, Magnetoelectric Interaction Phenomena in Crystals (Gordon and Breach, New York, 1979)

    Google Scholar 

  14. M. Fiebig, J. Phys. D, Appl. Phys. 38, R123 (2005)

    Article  CAS  Google Scholar 

  15. T. O’Dell, The Electrodynamics of Magnetoelectric Media (North-Holland, Amsterdam, 1970)

    Google Scholar 

  16. A. Gurevich, G. Melkov, Magnetization Oscillations and Waves (CRC Press, Boca Raton, 1996)

    Google Scholar 

  17. A. Figotin, I. Vitebskiy, Laser Photonics Rev. 5, 201 (2011)

    Article  CAS  Google Scholar 

  18. A. Figotin, I. Vitebskiy, Phys. Rev. B 77, 104421 (2008)

    Article  Google Scholar 

  19. M. Inoue et al., J. Phys. D, Appl. Phys. 39, R151 (2006)

    Article  CAS  Google Scholar 

  20. M. Inoue, T. Fujii, J. Appl. Phys. 81, 5659 (1997)

    Article  CAS  Google Scholar 

  21. M. Inoue, K. Arai, J. Appl. Phys. 83, 6768 (1998)

    Article  CAS  Google Scholar 

  22. M. Inoue, K. Arai, T. Fuji, M. Abe, J. Appl. Phys. 85, 5768 (1999)

    Article  CAS  Google Scholar 

  23. I. Lyubchanskii, N. Dadoenkova, M. Lyubchanskii, E. Shapovalov, T. Rasing, J. Phys. D, Appl. Phys. 36, R277 (2003)

    Article  CAS  Google Scholar 

  24. M. Levy, R. Li, Appl. Phys. Lett. 89, 121113 (2006)

    Article  Google Scholar 

  25. M. Levy, A.A. Jalali, J. Opt. Soc. Am. B 24, 1603 (2007)

    Article  CAS  Google Scholar 

  26. S. Khartsev, A. Grishin, J. Appl. Phys. 101, 053906 (2007)

    Article  Google Scholar 

  27. S. Kahl, A. Grishin, Appl. Phys. Lett. 84, 1438 (2004)

    Article  CAS  Google Scholar 

  28. C.-W. Nana, M. Bichurin, S. Dongb, D. Viehland, G. Srinivasan, J. Appl. Phys. 103, 031101 (2008)

    Article  Google Scholar 

  29. K. Bi, Y. Wang, D. Panb, W. Wua, Scr. Mater. 63, 589 (2010)

    Article  CAS  Google Scholar 

  30. C. Bender, S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998)

    Article  CAS  Google Scholar 

  31. T. Kottos, Nat. Phys. 6, 166 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported through Dr. A. Nachman of the U.S. Air Force Office of Scientific Research and the Air Force Research Lab Metamaterial Portfolio.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alex Figotin or Ilya Vitebskiy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Figotin, A., Vitebskiy, I. (2013). Electromagnetic Unidirectionality in Magnetic Photonic Crystals. In: Inoue, M., Levy, M., Baryshev, A. (eds) Magnetophotonics. Springer Series in Materials Science, vol 178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35509-7_3

Download citation

Publish with us

Policies and ethics