Skip to main content

Computational Equivalence and Classical Recursion Theory

  • Chapter
Irreducibility and Computational Equivalence

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 2))

  • 1353 Accesses

Abstract

Two central results in Wolfram’s A New Kind of Science [17] have attracted close scrutiny by the computability theory community: the first is the computational universality of elementary cellular automaton rule number 110, the other the Principle of Computational Equivalence, see section 2 below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cook, M.: Universality in elementary cellular automata. Complex Systems 15(1), 1–40 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Davis, M.: Foundations of mathematics (2003), http://www.cs.nyu.edu/mailman/listinfo/fom

  3. Gonthier, G.: Formal proof–the four-color theorem. Notices AMS 55(11), 1382–1393 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Kari, J.: Reversibility of 2D cellular automata is undecidable. Physica D 45, 397–385 (1990)

    Google Scholar 

  5. Khoussainov, B., Nerode, A.: Automatic Presentations of Structures. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  6. Khoussainov, B., Rubin, S.: Automatic structures: overview and future directions. J. Autom. Lang. Comb. 8(2), 287–301 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Kleene, S.C., Post, E.L.: The upper semi-lattice of degrees of recursive unsolvability. Annals of Mathematics 59, 379–407 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  8. Matiyasevich, Y.: Hilbert’s Tenth Problem. MIT Press (1993)

    Google Scholar 

  9. Neary, T., Woods, D.: P-completeness of Cellular Automaton Rule 110. In: Bugliesi, M., et al. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 132–143. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Rogozhin, Y.: Small universal Turing machines. Theor. Comput. Sci. 168(2), 215–240 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Searle, J.R.: Is the Brain a Digital Computer. In: Philosophy in a New Century, pp. 86–106. Cambridge University Press (2008)

    Google Scholar 

  12. Soare, R.I.: The Friedberg-Muchnik theorem re-examined. Canad. J. Math. 24, 1070–1078 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sutner, K.: Model checking one-dimensional cellular automata. J. Cellular Automata 4(3), 213–224 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Sutner, K.: Cellular automata, decidability and phasespace. Fundamenta Informaticae 140, 1–20 (2010)

    MathSciNet  Google Scholar 

  15. Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. P. Lond. Math. Soc. 42, 230–265 (1936)

    Article  Google Scholar 

  16. Wang, H.: Popular Lectures on Mathematical Logic. Dover, New York (1993)

    Google Scholar 

  17. Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sutner, K. (2013). Computational Equivalence and Classical Recursion Theory. In: Zenil, H. (eds) Irreducibility and Computational Equivalence. Emergence, Complexity and Computation, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35482-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35482-3_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35481-6

  • Online ISBN: 978-3-642-35482-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics