Skip to main content

Extracerebral Effects of Hyperventilation: What are the Mechanisms?

  • Chapter
Annual Update in Intensive Care and Emergency Medicine 2013

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

  • 2694 Accesses

Abstract

Hypocapnic hyperventilation is used in neuroanesthesia and in neurointensive care for the treatment of raised intracranial pressure (ICP) in the context of traumatic brain injury (TBI) [1, 2]. The careful and targeted use of hypocapnia for the shortterm control of raised ICP remains a useful therapeutic tool [1, 3]. Hypocapnia lowers ICP by the induction of cerebral vasoconstriction with a subsequent decrease in cerebral blood volume. Over the past decade, relatively more attention has been paid to the adverse effects of hyperventilation than to the beneficial and concern seems to exceed enthusiasm because of the potential downside of hyperventilation, i. e., decreasing cerebral blood flow (CBF) to ischemic levels [2]. There is no evidence in the literature unequivocally demonstrating that hyperventilation for the treatment of raised ICP in patients with TBI is related to poorer outcome, and there is also no evidence showing beneficial effects on overall outcome [3, 4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stocchetti N, Maas AI, Chieregato A, van der Plas AA (2005) Hyperventilation in head injury: a review. Chest 127:1812–1827

    Article  PubMed  Google Scholar 

  2. Curley G, Kavanagh BP, Laffey JG ( 2011) Hypocapnia and the injured brain: more harm than benefit. Crit Care Med 38:1348–1359

    Google Scholar 

  3. Bratton SL, Chestnut RM, Ghajar J et al (2007) Guidelines for the management of severe traumatic brain injury. XIV. Hyperventilation. J Neurotrauma 24(suppl 1):S87–S90

    PubMed  Google Scholar 

  4. Muizelaar JP, Marmarou A, Ward JD et al (1991) Adverse effects of prolonged hyperventilation in patients with severe head injury: a randomized clinical trial. J Neurosurg 75:731–739

    Article  PubMed  CAS  Google Scholar 

  5. Pinsky MR (1994) Cardiovascular effects of ventilatory support and withdrawal. Anesth Analg 79:567–576

    Article  PubMed  CAS  Google Scholar 

  6. Toivonen HJ, Catravas JD (1987) Effects of acid-base imbalance on pulmonary angiotensin-converting enzyme in vivo. J Appl Physiol 63:1629–1637

    PubMed  CAS  Google Scholar 

  7. Shibata O, Makita T, Tsujita T et al (1995) Carbachol, norepinephrine, and hypocapnia stimulate phosphatidylinositol turnover in rat tracheal slices. Anesthesiology 82:102–107

    Article  PubMed  CAS  Google Scholar 

  8. Domino KB, Swenson ER, Polissar NL, Lu Y, Eisenstein BL, Hlastala MP (1993) Effect of inspired CO2 on ventilation and perfusion heterogeneity in hyperventilated dogs. J Appl Physiol 75:1306–1314

    PubMed  CAS  Google Scholar 

  9. Domino KB, Lu Y, Eisenstein BL, Hlastala MP (1993) Hypocapnia worsens arterial blood oxygenation and increases VA/Q heterogeneity in canine pulmonary edema. Anesthesiology 78:91–99

    Article  PubMed  CAS  Google Scholar 

  10. Myrianthefs PM, Briva A, Lecuona E et al (2005) Hypocapnic but not metabolic alkalosis impairs alveolar fluid reabsorption. Am J Respir Crit Care Med 171:1267–1271

    Article  PubMed  Google Scholar 

  11. Schnader JY, Juan G, Howell S, Fitzgerald R, Roussos C (1985) Arterial CO2 partial pressure affects diaphragmatic function. J Appl Physiol 58:823–829

    PubMed  CAS  Google Scholar 

  12. Mascia L, Zavala E, Bosma K et al (2007) High tidal volume is associated with the development of acute lung injury after severe brain injury: an international observational study. Crit Care Med 35:1815–1820

    Article  PubMed  Google Scholar 

  13. Tsukimoto K, Arcos JP, Schaffartzik W, Wagner PD, West JB (1992) Effects of inspired CO2, hyperventilation, and time on VA/Q inequality in the dog. J Appl Physiol 72:1057–1063

    PubMed  CAS  Google Scholar 

  14. Riggs TE, Shafer AW, Guenter CA (1972) Physiologic effects of passive hyperventilation on oxygen delivery and consumption. 1. Proc Soc Exp Biol Med 140:1414–1417

    PubMed  CAS  Google Scholar 

  15. Boarini DJ, Kassell NF, Sprowell JA, Olin JJ, Coester HC (1985) Cerebrovascular effects of hypocapnia during adenosine-induced arterial hypotension. J Neurosurg 63:937–943

    Article  PubMed  CAS  Google Scholar 

  16. Zwillich CW, Pierson DJ, Creagh EM, Weil JV (1976) Effects of hypocapnia and hypocapnic alkalosis on cardiovascular function. J Appl Physiol 40:333–337

    PubMed  CAS  Google Scholar 

  17. Kusuoka H, Backx PH, Camilion de Hurtado M, Azan-Backx M, Marban E, Cingolani HE (1993) Relative roles of intracellular Ca2+ and pH in shaping myocardial contractile response to acute respiratory alkalosis. Am J Physiol 265:H1696–H1703

    PubMed  CAS  Google Scholar 

  18. Onishi K, Sekioka K, Ishisu R et al (1996) Decrease in oxygen cost of contractility during hypocapnic alkalosis in canine hearts. Am J Physiol 270:H1905–H1913

    PubMed  CAS  Google Scholar 

  19. Coetzee A, Holland D, Foex P, Ryder A, Jones L (1984) The effect of hypocapnia on coronary blood flow and myocardial function in the dog. Anesth Analg 63:991–997

    Article  PubMed  CAS  Google Scholar 

  20. Rose BD, Post TW (2001) Clinical Physiology of Acid-Base and Electrolyte Disorders. McGraw Hill, New York

    Google Scholar 

  21. Khambatta HJ, Sullivan SF (1973) Effects of respiratory alkalosis on oxygen consumption and oxygenation. Anesthesiology 38:53–58

    Article  PubMed  CAS  Google Scholar 

  22. Cain SM (1970) Increased oxygen uptake with passive hyperventilation of dogs. J Appl Physiol 28:4–7

    PubMed  CAS  Google Scholar 

  23. Khambatta HJ, Sullivan SF (1974) Carbon dioxide production and washout during passive hyperventilation alkalosis. J Appl Physiol 37:665–669

    PubMed  CAS  Google Scholar 

  24. Karlsson T, Stjernstrom EL, Stjernstrom H, Norlen K, Wiklund L (1994) Central and regional blood flow during hyperventilation. An experimental study in the pig. Acta Anaesthesiol Scand 38:180–186

    Article  PubMed  CAS  Google Scholar 

  25. Lonigro AJ, Brash DW, Stephenson AH, Heitmann LJ, Sprague RS (1982) Effect of ventilatory rate on renal venous PGE2 and PGF2 alpha efflux in anesthetized dogs. Am J Physiol 242:F38–F45

    PubMed  CAS  Google Scholar 

  26. Adrogue HJ, Madias NE (1981) Changes in plasma potassium concentration during acute acid-base disturbances. Am J Med 71:456–467

    Article  PubMed  CAS  Google Scholar 

  27. Guyton AC, Hall JE (2000) Textbook of Medical Physiology, 11th edn. Saunders, Philadelphia

    Google Scholar 

  28. Giammarco RA, Goldstein MB, Halperin ML, Stinebaugh BJ (1976) The effect of hyperventilation on distal nephron hydrogen ion secretion. J Clin Invest 58:77–82

    Article  PubMed  CAS  Google Scholar 

  29. Sehy JT, Roseman MK, Arruda JA, Kurtzman NA (1978) Characterization of distal hydrogen ion secretion in acute respiratory alkalosis. Am J Physiol 235:F203–F208

    PubMed  CAS  Google Scholar 

  30. Tannen RL, Goyal M (1984) Response of ammoniagenesis to acute alkalosis. Am J Physiol 247:F827–F836

    PubMed  CAS  Google Scholar 

  31. Gougoux A, Vinay P, Cardoso M, Duplain M (1984) Renal metabolism and ammoniagenesis during acute respiratory alkalosis in the dog. Can J Physiol Pharmacol 62:1129–1135

    Article  PubMed  CAS  Google Scholar 

  32. Eiam-ong S, Laski ME, Kurtzman NA, Sabatini S (1994) Effect of respiratory acidosis and respiratory alkalosis on renal transport enzymes. Am J Physiol 267:F390–F399

    PubMed  CAS  Google Scholar 

  33. Unwin R, Stidwell R, Taylor S, Capasso G (1997) The effects of respiratory alkalosis and acidosis on net bicarbonate flux along the rat loop of Henle in vivo. Am J Physiol 273:F698–F705

    PubMed  CAS  Google Scholar 

  34. Hoppe A, Metler M, Berndt TJ, Knox FG, Angielski S (1982) Effect of respiratory alkalosis on renal phosphate excretion. Am J Physiol 243:F471–F475

    PubMed  CAS  Google Scholar 

  35. Berndt TJ, Knox FG (1985) Nephron site of resistance to phosphaturic effect of PTH during respiratory alkalosis. Am J Physiol 249:F919–F922

    PubMed  CAS  Google Scholar 

  36. Fujita Y, Sakai T, Ohsumi A, Takaori M (1989) Effects of hypocapnia and hypercapnia on splanchnic circulation and hepatic function in the beagle. Anesth Analg 69:152–157

    Article  PubMed  CAS  Google Scholar 

  37. Guzman JA, Kruse JA (1999) Splanchnic hemodynamics and gut mucosal-arterial PCO(2) gradient during systemic hypocapnia. J Appl Physiol 87:1102–1106

    PubMed  CAS  Google Scholar 

  38. Pernat A, Weil MH, Tang W et al (1999) Effects of hyper- and hypoventilation on gastric and sublingual PCO(2). J Appl Physiol 87:933–937

    PubMed  CAS  Google Scholar 

  39. Goldstein PJ, Simmons DH, Tashkin DP (1972) Effect of acid-base alterations on hepatic lactate utilization. J Physiol 223:261–278

    PubMed  CAS  Google Scholar 

  40. Feldman GM, Charney AN (1982) Effect of acute respiratory alkalosis and acidosis on intestinal ion transport in vivo. Am J Physiol 242:G486–G492

    PubMed  CAS  Google Scholar 

  41. Charney AN, Arnold M, Johnstone N (1983) Acute respiratory alkalosis and acidosis and rabbit intestinal ion transport in vivo. Am J Physiol 244:G145–G150

    PubMed  CAS  Google Scholar 

  42. Kurtin P, Charney AN (1984) Intestinal ion transport and intracellular pH during acute respiratory alkalosis and acidosis. Am J Physiol 247:G24–G31

    PubMed  CAS  Google Scholar 

  43. Kurtin P, Charney AN (1984) Effect of arterial carbon dioxide tension on amiloride-sensitive sodium absorption in the colon. Am J Physiol 247:G537–G541

    PubMed  CAS  Google Scholar 

  44. Berry MN, Scheuer J (1967) Splanchnic lactic acid metabolism in hyperventilation, metabolic alkalosis and shock. Metabolism 16:537–547

    Article  PubMed  CAS  Google Scholar 

  45. Zborowska-Sluis DT, Dossetor JB (1967) Hyperlactatemia of hyperventilation. J Appl Physiol 22:746–755

    PubMed  CAS  Google Scholar 

  46. Laffey JG, Kavanagh BP (1999) Carbon dioxide and the critically ill – too little of a good thing? Lancet 354:1283–1286

    Article  PubMed  CAS  Google Scholar 

  47. Laffey JG, Kavanagh BP (2002) Hypocapnia. N Engl J Med 347:43–53

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Conte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Froio, S., Conte, V., Stocchetti, N. (2013). Extracerebral Effects of Hyperventilation: What are the Mechanisms?. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2013. Annual Update in Intensive Care and Emergency Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35109-9_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35109-9_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35108-2

  • Online ISBN: 978-3-642-35109-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics