Skip to main content

Scientific Background

  • Chapter
  • First Online:
Colloidal Dispersions Under Slit-Pore Confinement

Part of the book series: Springer Theses ((Springer Theses))

  • 423 Accesses

Abstract

A colloidal system consists of two separate phases: a dispersed phase (or internal phase) and a continuous phase (or dispersion medium). The dispersed phase and the continuous medium can be in gas, liquid, and solid states. The dispersed-phase has a diameter of between approximately 1 and 1000 nm. Homogeneous mixtures with a dispersed phase in this size range may be called colloidal aerosols, colloidal emulsions, colloidal foams, colloidal suspensions, or hydrosols depending on varying combinations of dispersed phase and continuous phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verwey, E. J. W., & Overbeek, J. T. G. (1948). Theory of stability of lyophobic colloids. Amsterdam: ELSEVIER.

    Google Scholar 

  2. Derjaguin, B. V., & Landau, L. (1941). Acta Physicochim URSS, 14, 633.

    Google Scholar 

  3. Hamaker, H. C. (1937). Physica, 4, 1058–72.

    Article  ADS  Google Scholar 

  4. Lifshitz, E. M. (1956). Soviet Physics JETP USSR, 2, 73–83.

    Google Scholar 

  5. Israelachvili, J. N. (1992). Intermolecular and surface forces. London: Academic Press.

    Google Scholar 

  6. Russel, W., Saville, D., & Schowalter, W. (1989). Colloidal dispersions. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  7. Hutter, R. J. (2002). Foundations of colloid science. Oxford: Oxford University Press.

    Google Scholar 

  8. Derjaguin, B. V. (1934). Kolloid Z, 69, 155–64.

    Article  Google Scholar 

  9. Asakura, S., & Oosawa, F. (1954). Journal of Chemical Physics, 22, 1255–1256.

    ADS  Google Scholar 

  10. Asakura, S., & Oosawa, F. (1958). Journal of Polymer Science, 33, 183–192.

    Article  ADS  Google Scholar 

  11. Israelachvili, J., & Pashley, R. (1982). Nature, 300, 341–342.

    Article  ADS  Google Scholar 

  12. Israelachvili, J., & Pashley, R. (1984). Journal of Colloid and Interface Science, 98, 500–514.

    Google Scholar 

  13. Rabinovich, Y., & Derjaguin, B. (1988). Colloids and Surfaces, 30, 243–251.

    Google Scholar 

  14. Claesson, P., & Christenson, H. (1988). Journal of Physics and Chemistry, 92, 1650–1655.

    Article  Google Scholar 

  15. Attard, P., & Parker, J. (1992). Journal of Physics and Chemistry, 96, 5086–5093.

    Article  Google Scholar 

  16. Blawzdziewicz, J., & Wajnryb, E. (2005). Europhysics Letters, 71, 269–275.

    Article  ADS  Google Scholar 

  17. Trokhynichuk, A., Henderson, D., Nikolov, A., & Wasan, D. (2005). Langmuir, 21, 10240–10250.

    Article  Google Scholar 

  18. Schoen, M., & Klapp, S. H. L. (2007). Nanoconfined fluids. Soft matter between two and three dimensions. New York: Wiley.

    Google Scholar 

  19. Evans, R., Henderson, J., Hoyle, D., Parry, A., & Sabeur, Z. (1993). Molecular Physics, 80, 755–775.

    Article  ADS  Google Scholar 

  20. Grodon, C., Dijkstra, M., Evans, R., & Roth, R. (2005). Molecular Physics, 103, 3009–3023.

    Article  ADS  Google Scholar 

  21. Gotzelmann, B., Evans, R., & Dietrich, S. (1998). Physical Review E, 57, 6785–6800.

    Article  ADS  Google Scholar 

  22. Trokhymchuk, A., Henderson, D., Nikolov, A., & Wasan, D. (2001). Langmuir, 17, 4940–4947.

    Article  Google Scholar 

  23. Klapp, S., & Schoen, M. (2002). Journal of Chemical Physics, 117, 8050–8062.

    Article  ADS  Google Scholar 

  24. Schoen, M., Gruhn, T., & Diestler, D. (1998). Journal of Chemical Physics, 109, 301–311.

    Article  ADS  Google Scholar 

  25. Jonsson, B., Broukhno, A., Forsman, J., & Akesson, T. (2003). Langmuir, 19, 9914–9922.

    Article  Google Scholar 

  26. Kralchevsky, P., & Denkov, N. (1995). Chemical Physics Letters, 240, 385–392.

    Article  ADS  Google Scholar 

  27. Basheva, E. S., Kralchevsky, P. A., Danov, K. D., Ananthapadmanabhan, K. P., & Lips, A. (2007). Physical Chemistry Chemical Physics, 9, 5183–5198.

    Article  Google Scholar 

  28. Klapp, S. H. L., Qu, D., & von Klitzing, R. J. (2007). Journal of Physical Chemistry B, 111, 1296–1303.

    Article  Google Scholar 

  29. Klapp, S. H. L., Grandner, S., Zeng, Y., & von Klitzing, R. (2008). Journal of Physics: Condensed Matter, 20, 494232.

    Article  Google Scholar 

  30. Klapp, S. H. L., Zeng, Y., Qu, D., & von Klitzing, R. (2008). Physical Review Letters, 100, 118303.

    Article  ADS  Google Scholar 

  31. Grandner, S., Zeng, Y., von Klitzing, R., & Klapp, S. H. L. (2009). Journal of Chemical Physics, 131, 154702.

    Article  ADS  Google Scholar 

  32. Ornstein, L., & Zernike, F. (1914). Proceedings of the Academy of Sciences Amsterdam, 17, 793.

    Google Scholar 

  33. Hansen, I. R., & McDonald, J. P. (2006). Theory of simple liquids (3rd ed.). Amsterdam: Academic Press.

    Google Scholar 

  34. Hopkins, P., Archer, A., & Evans, R. (2005). Physical Review E, 71, 027401.

    Article  ADS  Google Scholar 

  35. Schoen, M., Klapp, S. H. L (2007). Reviews in computational chemsitry (Vol. 24). New Jersey: WILEY-VCH.

    Google Scholar 

  36. Carnahan, N., & Starling, K. (1969). Journal of Chemical Physics, 51, 635.

    Article  ADS  Google Scholar 

  37. Reiss, H., Frisch, H., Helfand, E., & Lebowitz, J. (1960). Journal of Chemical Physics, 32, 119–124.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zeng .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zeng, Y. (2012). Scientific Background. In: Colloidal Dispersions Under Slit-Pore Confinement. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34991-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34991-1_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34990-4

  • Online ISBN: 978-3-642-34991-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics