Skip to main content

General Management of Spinal Injuries

  • Reference work entry
  • First Online:
European Surgical Orthopaedics and Traumatology
  • 295 Accesses

Abstract

Spinal trauma is a serious issue with a tremendous impact in western countries. Patients are usually very young, involved in high energy trauma but spinal trauma is more and more frequent in the elderly. Sequelae can be devastating and irreversible. The social impact of spinal trauma is considerable. Efforts are being made in prevention and in managing patients with spinal injuries. Many studies tried to evaluate neuro-protective agents to enhance recovery. Although the AO classification is being widely used in Europe, new classifications have been published to help physicians in understanding mechanisms and treatment rationales. Conservative treatment can give good results mainly with low energy trauma and no neurological impairment. Surgery is being indicated to ensure good fracture reduction and neural decompression. Surgical techniques are based on fusion by posterior or anterior approaches. No approach has proven to give better long-term results and no consensus has been found with respect to posterior fusion or fixation extent. New minimally-invasive techniques have recently emerged in an effort to decrease surgical morbidity especially in elderly and polytrauma patients. These techniques need to be confirmed by large prospective randomized studies with long-term follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Richards D, et al. Incidence of thoracic and lumbar spine injuries for restrained occupants in frontal collisions. Annu Proc Assoc Adv Automot Med. 2006;50:125–39.

    PubMed Central  PubMed  Google Scholar 

  2. Robertson A, et al. Spinal injuries in motorcycle crashes: patterns and outcomes. J Trauma. 2002;53(1):5–8.

    PubMed  Google Scholar 

  3. Robertson A, et al. Spinal injury patterns resulting from car and motorcycle accidents. Spine (Phila Pa 1976). 2002;27(24):2825–30.

    Google Scholar 

  4. Hahn MP, et al. Injury pattern after fall from great height. An analysis of 101 cases. Unfallchirurg. 1995;98(12):609–13.

    CAS  PubMed  Google Scholar 

  5. Farmer JC, et al. The changing nature of admissions to a spinal cord injury center: violence on the rise. J Spinal Disord. 1998;11(5):400–3.

    CAS  PubMed  Google Scholar 

  6. Etminan M, et al. Revision strategies for lumbar pseudarthrosis. Orthop Clin North Am. 2002;33(2):381–92.

    PubMed  Google Scholar 

  7. Wolf BR, et al. Injury patterns in division I collegiate swimming. Am J Sports Med. 2009;37(10):2037–42.

    PubMed  Google Scholar 

  8. Tator CH, Carson JD, Edmonds VE. New spinal injuries in hockey. Clin J Sport Med. 1997;7(1):17–21.

    CAS  PubMed  Google Scholar 

  9. Press JM, et al. The national jockey injury study: an analysis of injuries to professional horse-racing jockeys. Clin J Sport Med. 1995;5(4):236–40.

    CAS  PubMed  Google Scholar 

  10. Kruse D, Lemmen B. Spine injuries in the sport of gymnastics. Curr Sports Med Rep. 2009;8(1):20–8.

    PubMed  Google Scholar 

  11. Franz T, et al. Severe spinal injuries in alpine skiing and snowboarding: a 6-year review of a tertiary trauma centre for the Bernese Alps ski resorts, Switzerland. Br J Sports Med. 2008;42(1):55–8.

    CAS  PubMed  Google Scholar 

  12. Blacksin MF. Patterns of fracture after air bag deployment. J Trauma. 1993;35(6):840–3.

    CAS  PubMed  Google Scholar 

  13. Kuner EH, Schlickewei W, Oltmanns D. Protective air bags in traffic accidents. Change in the injury pattern and reduction in the severity of injuries. Unfallchirurgie. 1995;21(2):92–9.

    CAS  PubMed  Google Scholar 

  14. Anderson S, Biros MH, Reardon RF. Delayed diagnosis of thoracolumbar fractures in multiple-trauma patients. Acad Emerg Med. 1996;3(9):832–9.

    CAS  PubMed  Google Scholar 

  15. Inamasu J, Guiot BH. Thoracolumbar junction injuries after motor vehicle collision: are there differences in restrained and nonrestrained front seat occupants? J Neurosurg Spine. 2007;7(3):311–4.

    PubMed  Google Scholar 

  16. Gertzbein SD. Scoliosis research society. Multicenter spine fracture study. Spine (Phila Pa 1976). 1992;17(5):528–40.

    CAS  Google Scholar 

  17. Henderson RL, Reid DC, Saboe LA. Multiple noncontiguous spine fractures. Spine (Phila Pa 1976). 1991;16(2):128–31.

    CAS  Google Scholar 

  18. Arthornthurasook A, Thongmag P. Thoracolumbar burst fracture with another spinal fracture. J Med Assoc Thai. 1990;73(5):279–82.

    CAS  PubMed  Google Scholar 

  19. Kossmann T, et al. Damage control surgery for spine trauma. Injury. 2004;35(7):661–70.

    PubMed  Google Scholar 

  20. Nirula R, Brasel K. Do trauma centers improve functional outcomes: a national trauma databank analysis? J Trauma. 2006;61(2):268–71.

    PubMed  Google Scholar 

  21. Harris MB, Sethi RK. The initial assessment and management of the multiple-trauma patient with an associated spine injury. Spine (Phila Pa 1976). 2006;31 Suppl 11:S9–15; discussion S36.

    Google Scholar 

  22. Langeron O, Birenbaum A, Amour J. Airway management in trauma. Minerva Anestesiol. 2009;75(5):307–11.

    CAS  PubMed  Google Scholar 

  23. Groupe Experts. Prise en charge d'un blessé adulte présentant un traumatisme vertébro-médullaire. SFCR, Editor; 2003.

    Google Scholar 

  24. Mithani SK, et al. Predictable patterns of intracranial and cervical spine injury in craniomaxillofacial trauma: analysis of 4786 patients. Plast Reconstr Surg. 2009;123(4):1293–301.

    CAS  PubMed  Google Scholar 

  25. Mulligan R, Mahabir R. The prevalence of C-spine injury and/or head injury with isolated and multiple craniomaxillofacial fractures. Plast Reconstr Surg. 2010;126:1647–51.

    CAS  PubMed  Google Scholar 

  26. Chapman JR, et al. Thoracolumbar flexion-distraction injuries: associated morbidity and neurological outcomes. Spine (Phila Pa 1976). 2008;33(6):648–57.

    Google Scholar 

  27. Bernstein MP, Mirvis SE, Shanmuganathan K. Chance-type fractures of the thoracolumbar spine: imaging analysis in 53 patients. AJR Am J Roentgenol. 2006;187(4):859–68.

    PubMed  Google Scholar 

  28. van Beek EJ, et al. Upper thoracic spinal fractures in trauma patients – a diagnostic pitfall. Injury. 2000;31(4):219–23.

    PubMed  Google Scholar 

  29. Nork SE, et al. Percutaneous stabilization of U-shaped sacral fractures using iliosacral screws: technique and early results. J Orthop Trauma. 2001;15(4):238–46.

    CAS  PubMed  Google Scholar 

  30. Del Rossi G, et al. Spine-board transfer techniques and the unstable cervical spine. Spine (Phila Pa 1976). 2004;29(7):E134–8.

    Google Scholar 

  31. Del Rossi G, et al. The 6-plus-person lift transfer technique compared with other methods of spine boarding. J Athl Train. 2008;43(1):6–13.

    PubMed Central  PubMed  Google Scholar 

  32. Horodyski M, et al. Motion generated in the unstable lumbar spine during hospital bed transfers. J Spinal Disord Tech. 2009;22(1):45–8.

    PubMed  Google Scholar 

  33. Hsu JM, Joseph T, Ellis AM. Thoracolumbar fracture in blunt trauma patients: guidelines for diagnosis and imaging. Injury. 2003;34(6):426–33.

    PubMed  Google Scholar 

  34. Cohen ME, et al. A test of the 1992 international standards for neurological and functional classification of spinal cord injury. Spinal Cord. 1998;36(8):554–60.

    CAS  PubMed  Google Scholar 

  35. Lucas JT, Ducker TB. Motor classification of spinal cord injuries with mobility, morbidity and recovery indices. Am Surg. 1979;45(3):151–8.

    CAS  PubMed  Google Scholar 

  36. Bondurant FJ, et al. Acute spinal cord injury. A study using physical examination and magnetic resonance imaging. Spine (Phila Pa 1976). 1990;15(3):161–8.

    CAS  Google Scholar 

  37. Bhardwaj P, Bhardwaj N. Motor grading of elbow flexion – is Medical Research Council grading good enough? J Brachial Plex Peripher Nerve Inj. 2009;4:3.

    PubMed Central  PubMed  Google Scholar 

  38. Ko HY, et al. The pattern of reflex recovery during spinal shock. Spinal Cord. 1999;37(6):402–9.

    CAS  PubMed  Google Scholar 

  39. Frankel HL, et al. The value of postural reduction in the initial management of closed injuries of the spine with paraplegia and tetraplegia I. Paraplegia. 1969;7(3):179–92.

    CAS  PubMed  Google Scholar 

  40. Toh E, et al. Functional evaluation using motor scores after cervical spinal cord injuries. Spinal Cord. 1998;36(7):491–6.

    CAS  PubMed  Google Scholar 

  41. Wells JD, Nicosia S. Scoring acute spinal cord injury: a study of the utility and limitations of five different grading systems. J Spinal Cord Med. 1995;18(1):33–41.

    CAS  PubMed  Google Scholar 

  42. El Masry WS, et al. Validation of the American Spinal Injury Association (ASIA) motor score and the National Acute Spinal Cord Injury Study (NASCIS) motor score. Spine (Phila Pa 1976). 1996;21(5):614–9.

    Google Scholar 

  43. McKinley W, et al. Incidence and outcomes of spinal cord injury clinical syndromes. J Spinal Cord Med. 2007;30(3):215–24.

    PubMed Central  PubMed  Google Scholar 

  44. Schneider RC, Cherry G, Pantek H. The syndrome of acute central cervical spinal cord injury; with special reference to the mechanisms involved in hyperextension injuries of cervical spine. J Neurosurg. 1954;11(6):546–77.

    CAS  PubMed  Google Scholar 

  45. Zipfel B, et al. Traumatic transection of the aorta and thoracic spinal cord injury without radiographic abnormality in an adult patient. J Endovasc Ther. 2010;17(1):131–6.

    PubMed  Google Scholar 

  46. Reinke M, et al. Brown-Sequard syndrome caused by a high velocity gunshot injury: a case report. Spinal Cord. 2007;45(8):579–82.

    CAS  PubMed  Google Scholar 

  47. van der Linden E, Kroft LJ, Dijkstra PD. Treatment of vertebral tumor with posterior wall defect using image-guided radiofrequency ablation combined with vertebroplasty: preliminary results in 12 patients. J Vasc Interv Radiol. 2007;18(6):741–7.

    PubMed  Google Scholar 

  48. Harrop JS, Hunt Jr GE, Vaccaro AR. Conus medullaris and cauda equina syndrome as a result of traumatic injuries: management principles. Neurosurg Focus. 2004;16(6):e4.

    PubMed  Google Scholar 

  49. Kingwell SP, Curt A, Dvorak MF. Factors affecting neurological outcome in traumatic conus medullaris and cauda equina injuries. Neurosurg Focus. 2008;25(5):E7.

    PubMed  Google Scholar 

  50. Marshall LF, et al. Deterioration following spinal cord injury. A multicenter study. J Neurosurg. 1987;66(3):400–4.

    CAS  PubMed  Google Scholar 

  51. Bracken MB, et al. Methylprednisolone and neurological function 1 year after spinal cord injury. Results of the national acute spinal cord injury study. J Neurosurg. 1985;63(5):704–13.

    CAS  PubMed  Google Scholar 

  52. Bracken MB, et al. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the second national acute spinal cord injury study. N Engl J Med. 1990;322(20):1405–11.

    CAS  PubMed  Google Scholar 

  53. Bracken MB, et al. Methylprednisolone or naloxone treatment after acute spinal cord injury: 1-year follow-up data. Results of the second national acute spinal cord injury study. J Neurosurg. 1992;76(1):23–31.

    CAS  PubMed  Google Scholar 

  54. Shepard MJ, Bracken MB. The effect of methylprednisolone, naloxone, and spinal cord trauma on four liver enzymes: observations from NASCIS 2. National acute spinal cord injury study. Paraplegia. 1994;32(4):236–45.

    CAS  PubMed  Google Scholar 

  55. Hanigan WC, Anderson RJ. Commentary on NASCIS-2. J Spinal Disord. 1992;5(1):125–31; discussion 132–3.

    CAS  PubMed  Google Scholar 

  56. Young W, Bracken MB. The second national acute spinal cord injury study. J Neurotrauma. 1992;9 Suppl 1:S397–405.

    PubMed  Google Scholar 

  57. Young W. Secondary injury mechanisms in acute spinal cord injury. J Emerg Med. 1993;11 Suppl 1:13–22.

    PubMed  Google Scholar 

  58. Gerndt SJ, et al. Consequences of high-dose steroid therapy for acute spinal cord injury. J Trauma. 1997;42(2):279–84.

    CAS  PubMed  Google Scholar 

  59. Gerhart KA, et al. Utilization and effectiveness of methylprednisolone in a population-based sample of spinal cord injured persons. Paraplegia. 1995;33(6):316–21.

    CAS  PubMed  Google Scholar 

  60. Ito Y, et al. Does high dose methylprednisolone sodium succinate really improve neurological status in patient with acute cervical cord injury?: a prospective study about neurological recovery and early complications. Spine (Phila Pa 1976). 2009;34(20):2121–4.

    Google Scholar 

  61. Prendergast MR, et al. Massive steroids do not reduce the zone of injury after penetrating spinal cord injury. J Trauma. 1994;37(4):576–9; discussion 579–80.

    CAS  PubMed  Google Scholar 

  62. Levy ML, et al. Use of methylprednisolone as an adjunct in the management of patients with penetrating spinal cord injury: outcome analysis. Neurosurgery. 1996;39(6):1141–8; discussion 1148–9.

    CAS  PubMed  Google Scholar 

  63. Heary RF, et al. Steroids and gunshot wounds to the spine. Neurosurgery. 1997;41(3):576–83; discussion 583–4.

    CAS  PubMed  Google Scholar 

  64. Bracken MB, et al. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the third national acute spinal cord injury randomized controlled trial. National acute spinal cord injury study. JAMA. 1997;277(20):1597–604.

    CAS  PubMed  Google Scholar 

  65. Bracken MB, et al. Methylprednisolone or tirilazad mesylate administration after acute spinal cord injury: 1-year follow up. Results of the third national acute spinal cord injury randomized controlled trial. J Neurosurg. 1998;89(5):699–706.

    CAS  PubMed  Google Scholar 

  66. Molloy S, Middleton F, Casey AT. Failure to administer methylprednisolone for acute traumatic spinal cord injury-a prospective audit of 100 patients from a regional spinal injuries unit. Injury. 2002;33(7):575–8.

    CAS  PubMed  Google Scholar 

  67. Coleman WP, et al. A critical appraisal of the reporting of the National Acute Spinal Cord Injury Studies (II and III) of methylprednisolone in acute spinal cord injury. J Spinal Disord. 2000;13(3):185–99.

    CAS  PubMed  Google Scholar 

  68. Nesathurai S. Steroids and spinal cord injury: revisiting the NASCIS 2 and NASCIS 3 trials. J Trauma. 1998;45(6):1088–93.

    CAS  PubMed  Google Scholar 

  69. Bracken MB, et al. Clinical measurement, statistical analysis, and risk-benefit: controversies from trials of spinal injury. J Trauma. 2000;48(3):558–61.

    CAS  PubMed  Google Scholar 

  70. Short D. Is the role of steroids in acute spinal cord injury now resolved? Curr Opin Neurol. 2001;14(6):759–63.

    CAS  PubMed  Google Scholar 

  71. Sayer FT, Kronvall E, Nilsson OG. Methylprednisolone treatment in acute spinal cord injury: the myth challenged through a structured analysis of published literature. Spine J. 2006;6(3):335–43.

    PubMed  Google Scholar 

  72. O’Connor PA, et al. Methylprednisolone in acute spinal cord injuries. Ir J Med Sci. 2003;172(1):24–6.

    PubMed  Google Scholar 

  73. Molloy S, Price M, Casey AT. Questionnaire survey of the views of the delegates at the European Cervical Spine Research Society meeting on the administration of methylprednisolone for acute traumatic spinal cord injury. Spine (Phila Pa 1976). 2001;26(24):E562–4.

    CAS  Google Scholar 

  74. France JC, Bono CM, Vaccaro AR. Initial radiographic evaluation of the spine after trauma: when, what, where, and how to image the acutely traumatized spine. J Orthop Trauma. 2005;19(9):640–9.

    PubMed  Google Scholar 

  75. Frankel HL, et al. Indications for obtaining surveillance thoracic and lumbar spine radiographs. J Trauma. 1994;37(4):673–6.

    CAS  PubMed  Google Scholar 

  76. Hills MW, Delprado AM, Deane SA. Sternal fractures: associated injuries and management. J Trauma. 1993;35(1):55–60.

    CAS  PubMed  Google Scholar 

  77. el-Khoury GY, Whitten CG. Trauma to the upper thoracic spine: anatomy, biomechanics, and unique imaging features. AJR Am J Roentgenol. 1993;160(1):95–102.

    CAS  PubMed  Google Scholar 

  78. Keynan O, et al. Radiographic measurement parameters in thoracolumbar fractures: a systematic review and consensus statement of the spine trauma study group. Spine (Phila Pa 1976). 2006;31(5):E156–65.

    Google Scholar 

  79. Daffner RH, et al. The radiologic assessment of post-traumatic vertebral stability. Skeletal Radiol. 1990;19(2):103–8.

    CAS  PubMed  Google Scholar 

  80. Sampson MA, Colquhoun KB, Hennessy NL. Computed tomography whole body imaging in multi-trauma: 7 years experience. Clin Radiol. 2006;61(4):365–9.

    CAS  PubMed  Google Scholar 

  81. Antevil JL, et al. Spiral computed tomography for the initial evaluation of spine trauma: a new standard of care? J Trauma. 2006;61(2):382–7.

    PubMed  Google Scholar 

  82. Compoginis JM, Akopian G. CT imaging in motorcycle collision victims: routine or selective? Am Surg. 2009;75(10):892–6.

    PubMed  Google Scholar 

  83. Griffey RT, Ledbetter S, Khorasani R. Changes in thoracolumbar computed tomography and radiography utilization among trauma patients after deployment of multidetector computed tomography in the emergency department. J Trauma. 2007;62(5):1153–6.

    PubMed  Google Scholar 

  84. Brown CV, et al. Spiral computed tomography for the diagnosis of cervical, thoracic, and lumbar spine fractures: its time has come. J Trauma. 2005;58(5):890–5; discussion 895–6.

    PubMed  Google Scholar 

  85. Brandt MM, et al. Computed tomographic scanning reduces cost and time of complete spine evaluation. J Trauma. 2004;56(5):1022–6; discussion 1026–8.

    PubMed  Google Scholar 

  86. Ballock RT, et al. Can burst fractures be predicted from plain radiographs? J Bone Joint Surg Br. 1992;74(1):147–50.

    CAS  PubMed  Google Scholar 

  87. McGrory BJ, et al. Diagnosis of subtle thoracolumbar burst fractures. A new radiographic sign. Spine (Phila Pa 1976). 1993;18(15):2282–5.

    CAS  Google Scholar 

  88. Dai LY, et al. Plain radiography versus computed tomography scans in the diagnosis and management of thoracolumbar burst fractures. Spine (Phila Pa 1976). 2008;33(16):E548–52.

    Google Scholar 

  89. Fontijne WP, et al. CT scan prediction of neurological deficit in thoracolumbar burst fractures. J Bone Joint Surg Br. 1992;74(5):683–5.

    CAS  PubMed  Google Scholar 

  90. Schoenwaelder M, Maclaurin W, Varma D. Assessing potential spinal injury in the intubated multitrauma patient: does MRI add value? Emerg Radiol. 2009;16(2):129–32.

    PubMed  Google Scholar 

  91. Sekula Jr RF, et al. Exclusion of cervical spine instability in patients with blunt trauma with normal multidetector CT (MDCT) and radiography. Br J Neurosurg. 2008;22(5):669–74.

    PubMed  Google Scholar 

  92. Dai LY, et al. Assessment of ligamentous injury in patients with thoracolumbar burst fractures using MRI. J Trauma. 2009;66(6):1610–5.

    PubMed  Google Scholar 

  93. Lee HM, et al. Reliability of magnetic resonance imaging in detecting posterior ligament complex injury in thoracolumbar spinal fractures. Spine (Phila Pa 1976). 2000;25(16):2079–84.

    CAS  Google Scholar 

  94. Rihn JA, et al. Using magnetic resonance imaging to accurately assess injury to the posterior ligamentous complex of the spine: a prospective comparison of the surgeon and radiologist. J Neurosurg Spine. 2010;12(4):391–6.

    PubMed  Google Scholar 

  95. Vaccaro AR, et al. Assessment of injury to the posterior ligamentous complex in thoracolumbar spine trauma. Spine J. 2006;6(5):524–8.

    PubMed  Google Scholar 

  96. Lee JY, et al. Assessment of injury to the thoracolumbar posterior ligamentous complex in the setting of normal-appearing plain radiography. Spine J. 2007;7(4):422–7.

    PubMed  Google Scholar 

  97. Vaccaro AR, et al. Injury of the posterior ligamentous complex of the thoracolumbar spine: a prospective evaluation of the diagnostic accuracy of magnetic resonance imaging. Spine (Phila Pa 1976). 2009;34(23):E841–7.

    Google Scholar 

  98. Haba H, et al. Diagnostic accuracy of magnetic resonance imaging for detecting posterior ligamentous complex injury associated with thoracic and lumbar fractures. J Neurosurg. 2003;99 Suppl 1:20–6.

    PubMed  Google Scholar 

  99. Gillis C. Spinal ligament pathology. Vet Clin North Am Equine Pract. 1999;15(1):97–101.

    CAS  PubMed  Google Scholar 

  100. Moon SH, et al. Feasibility of ultrasound examination in posterior ligament complex injury of thoracolumbar spine fracture. Spine (Phila Pa 1976). 2002;27(19):2154–8.

    Google Scholar 

  101. Vordemvenne T, et al. Is there a way to diagnose spinal instability in acute burst fractures by performing ultrasound? Eur Spine J. 2009;18(7):964–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Holdsworth FW. Diagnosis and treatment of fractures of the spine. Manit Med Rev. 1968;48(1):13–5.

    CAS  PubMed  Google Scholar 

  103. Holdsworth FW. Fractures and dislocations of the lower thoracic and lumbar spines, with and without neurological involvement. Curr Pract Orthop Surg. 1964;23:61–83.

    CAS  PubMed  Google Scholar 

  104. Louis R. Unstable fractures of the spine. III. Instability. A. Theories concerning instability. Rev Chir Orthop Reparatrice Appar Mot. 1977;63(5):423–5.

    CAS  PubMed  Google Scholar 

  105. Denis F. The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine (Phila Pa 1976). 1983;8(8):817–31.

    CAS  Google Scholar 

  106. Decoulx P, Rieunau G. [Fractures of the dorsolumbar spine without neurological disorders]. Rev Chir Orthop Reparatrice Appar Mot. 1958;44(3–4):254–322.

    CAS  PubMed  Google Scholar 

  107. Guigui PLB, Deburge A. Fractures et luxations récentes du rachis thoracique et lombaire de l'adulte. Encyclopédie Médico-Chirurgical; 1998.

    Google Scholar 

  108. Ferguson RL, Allen Jr BL. A mechanistic classification of thoracolumbar spine fractures. Clin Orthop Relat Res. 1984;189:77–88.

    PubMed  Google Scholar 

  109. Magerl F, et al. A comprehensive classification of thoracic and lumbar injuries. Eur Spine J. 1994;3(4):184–201.

    CAS  PubMed  Google Scholar 

  110. Aebi M. Classification of thoracolumbar fractures and dislocations. Eur Spine J. 2010;19 Suppl 1:S2–7.

    PubMed  Google Scholar 

  111. McCormack T, Karaikovic E, Gaines RW. The load sharing classification of spine fractures. Spine (Phila Pa 1976). 1994;19(15):1741–4.

    CAS  Google Scholar 

  112. Dai LY, Jin WJ. Interobserver and intraobserver reliability in the load sharing classification of the assessment of thoracolumbar burst fractures. Spine (Phila Pa 1976). 2005;30(3):354–8.

    Google Scholar 

  113. Wang XY, et al. The load-sharing classification of thoracolumbar fractures: an in vitro biomechanical validation. Spine (Phila Pa 1976). 2007;32(11):1214–9.

    Google Scholar 

  114. Vaccaro AR, et al. A new classification of thoracolumbar injuries: the importance of injury morphology, the integrity of the posterior ligamentous complex, and neurologic status. Spine (Phila Pa 1976). 2005;30(20):2325–33.

    Google Scholar 

  115. Buchowski JM, et al. Surgical management of posttraumatic thoracolumbar kyphosis. Spine J. 2008;8(4):666–77.

    PubMed  Google Scholar 

  116. Rihn JA, et al. A review of the TLICS system: a novel, user-friendly thoracolumbar trauma classification system. Acta Orthop. 2008;79(4):461–6.

    PubMed  Google Scholar 

  117. Terk MR, et al. Injury of the posterior ligament complex in patients with acute spinal trauma: evaluation by MR imaging. AJR Am J Roentgenol. 1997;168(6):1481–6.

    CAS  PubMed  Google Scholar 

  118. Ratliff J, et al. Regional variability in use of a novel assessment of thoracolumbar spine fractures: United States versus international surgeons. World J Emerg Surg. 2007;2:24.

    PubMed Central  PubMed  Google Scholar 

  119. Patel AA, et al. The adoption of a new classification system: time-dependent variation in interobserver reliability of the thoracolumbar injury severity score classification system. Spine (Phila Pa 1976). 2007;32(3):E105–10.

    Google Scholar 

  120. Harrop JS, et al. Intrarater and interrater reliability and validity in the assessment of the mechanism of injury and integrity of the posterior ligamentous complex: a novel injury severity scoring system for thoracolumbar injuries. Invited submission from the Joint Section Meeting On Disorders of the Spine and Peripheral Nerves, March 2005. J Neurosurg Spine. 2006;4(2):118–22.

    PubMed  Google Scholar 

  121. Joaquim AF, et al. Evaluation of the thoracolumbar injury classification system in thoracic and lumbar spinal trauma. Spine (Phila Pa 1976). 2011;36(1):33–6.

    Google Scholar 

  122. Lenarz CJ, Place HM. Evaluation of a new spine classification system, does it accurately predict treatment? J Spinal Disord Tech. 2010;23(3):192–6.

    PubMed  Google Scholar 

  123. Oner FC, et al. Therapeutic decision making in thoracolumbar spine trauma. Spine (Phila Pa 1976). 2010;35 Suppl 21:S235–44.

    Google Scholar 

  124. Lenarz CJ, et al. Comparative reliability of 3 thoracolumbar fracture classification systems. J Spinal Disord Tech. 2009;22(6):422–7.

    PubMed  Google Scholar 

  125. Bedbrook GM. Treatment of thoracolumbar dislocation and fractures with paraplegia. Clin Orthop Relat Res. 1975;112:27–43.

    PubMed  Google Scholar 

  126. Zdeblick TA, et al. Surgical treatment of thoracolumbar fractures. Instr Course Lect. 2009;58:639–44.

    PubMed  Google Scholar 

  127. Giele BM, et al. No evidence for the effectiveness of bracing in patients with thoracolumbar fractures. Acta Orthop. 2009;80(2):226–32.

    PubMed Central  PubMed  Google Scholar 

  128. Rohlmann A, et al. Braces do not reduce loads on internal spinal fixation devices. Clin Biomech (Bristol, Avon). 1999;14(2):97–102.

    CAS  Google Scholar 

  129. Bailey CS, et al. Comparison of thoracolumbosacral orthosis and no orthosis for the treatment of thoracolumbar burst fractures: interim analysis of a multicenter randomized clinical equivalence trial. J Neurosurg Spine. 2009;11(3):295–303.

    PubMed  Google Scholar 

  130. Cantor JB, et al. Nonoperative management of stable thoracolumbar burst fractures with early ambulation and bracing. Spine (Phila Pa 1976). 1993;18(8):971–6.

    CAS  Google Scholar 

  131. Chow GH, et al. Functional outcome of thoracolumbar burst fractures managed with hyperextension casting or bracing and early mobilization. Spine (Phila Pa 1976). 1996;21(18):2170–5.

    CAS  Google Scholar 

  132. Mumford J, et al. Thoracolumbar burst fractures. The clinical efficacy and outcome of nonoperative management. Spine (Phila Pa 1976). 1993;18(8):955–70.

    CAS  Google Scholar 

  133. McEvoy RD, Bradford DS. The management of burst fractures of the thoracic and lumbar spine. Experience in 53 patients. Spine (Phila Pa 1976). 1985;10(7):631–7.

    CAS  Google Scholar 

  134. Tezer M, et al. Conservative treatment of fractures of the thoracolumbar spine. Int Orthop. 2005;29(2):78–82.

    PubMed Central  PubMed  Google Scholar 

  135. Moller A, et al. Nonoperatively treated burst fractures of the thoracic and lumbar spine in adults: a 23- to 41-year follow-up. Spine J. 2007;7(6):701–7.

    PubMed  Google Scholar 

  136. Agus H, Kayali C, Arslantas M. Nonoperative treatment of burst-type thoracolumbar vertebra fractures: clinical and radiological results of 29 patients. Eur Spine J. 2005;14(6):536–40.

    PubMed Central  PubMed  Google Scholar 

  137. Shen FH, Samartzis D. Successful nonoperative treatment of a three-column thoracic fracture in a patient with ankylosing spondylitis: existence and clinical significance of the fourth column of the spine. Spine (Phila Pa 1976). 2007;32(15):E423–7.

    Google Scholar 

  138. Tropiano P, et al. Functional and radiographic outcome of thoracolumbar and lumbar burst fractures managed by closed orthopaedic reduction and casting. Spine (Phila Pa 1976). 2003;28(21):2459–65.

    Google Scholar 

  139. Findlay JM, et al. A survey of vertebral burst-fracture management in Canada. Can J Surg. 1992;35(4):407–13.

    CAS  PubMed  Google Scholar 

  140. Post RB, et al. Nonoperatively treated type A spinal fractures: mid-term versus long-term functional outcome. Int Orthop. 2009;33(4):1055–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Knight RQ, et al. Comparison of operative versus nonoperative treatment of lumbar burst fractures. Clin Orthop Relat Res. 1993;293:112–21.

    PubMed  Google Scholar 

  142. Butler JS, Walsh A, O’Byrne J. Functional outcome of burst fractures of the first lumbar vertebra managed surgically and conservatively. Int Orthop. 2005;29(1):51–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Wood K, et al. Operative compared with nonoperative treatment of a thoracolumbar burst fracture without neurological deficit. A prospective, randomized study. J Bone Joint Surg Am. 2003;85-A(5):773–81.

    CAS  PubMed  Google Scholar 

  144. Thomas KC, et al. Comparison of operative and nonoperative treatment for thoracolumbar burst fractures in patients without neurological deficit: a systematic review. J Neurosurg Spine. 2006;4(5):351–8.

    PubMed  Google Scholar 

  145. Krengel 3rd WF, Anderson PA, Henley MB. Early stabilization and decompression for incomplete paraplegia due to a thoracic-level spinal cord injury. Spine (Phila Pa 1976). 1993;18(14):2080–7.

    Google Scholar 

  146. Fehlings MG, Tator CH. An evidence-based review of decompressive surgery in acute spinal cord injury: rationale, indications, and timing based on experimental and clinical studies. J Neurosurg. 1999;91 Suppl 1:1–11.

    CAS  PubMed  Google Scholar 

  147. Shuman WP, et al. Thoracolumbar burst fractures: CT dimensions of the spinal canal relative to postsurgical improvement. AJR Am J Roentgenol. 1985;145(2):337–41.

    CAS  PubMed  Google Scholar 

  148. Dai LY. Remodeling of the spinal canal after thoracolumbar burst fractures. Clin Orthop Relat Res. 2001;382:119–23.

    PubMed  Google Scholar 

  149. Duh MS, et al. The effectiveness of surgery on the treatment of acute spinal cord injury and its relation to pharmacological treatment. Neurosurgery. 1994;35(2):240–8; discussion 248–9.

    CAS  PubMed  Google Scholar 

  150. Zelle BA, et al. Sacral fractures with neurological injury: is early decompression beneficial? Int Orthop. 2004;28(4):244–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Rath SA, et al. Neurological recovery and its influencing factors in thoracic and lumbar spine fractures after surgical decompression and stabilization. Neurosurg Rev. 2005;28(1):44–52.

    PubMed  Google Scholar 

  152. Mouchaty H, et al. Assessment of three year experience of a strategy for patient selection and timing of operation in the management of acute thoracic and lumbar spine fractures: a prospective study. Acta Neurochir (Wien). 2006;148(11):1181–7; discussion 1187.

    CAS  Google Scholar 

  153. Rutges JP, Oner FC, Leenen LP. Timing of thoracic and lumbar fracture fixation in spinal injuries: a systematic review of neurological and clinical outcome. Eur Spine J. 2007;16(5):579–87.

    PubMed Central  PubMed  Google Scholar 

  154. Cengiz SL, et al. Timing of thoracolomber spine stabilization in trauma patients; impact on neurological outcome and clinical course. A real prospective (rct) randomized controlled study. Arch Orthop Trauma Surg. 2008;128(9):959–66.

    PubMed  Google Scholar 

  155. Fehlings MG, et al. Current practice in the timing of surgical intervention in spinal cord injury. Spine (Phila Pa 1976). 2010;35 Suppl 21:S166–73.

    Google Scholar 

  156. Frangen TM, et al. The beneficial effects of early stabilization of thoracic spine fractures depend on trauma severity. J Trauma. 2010;68(5):1208–12.

    PubMed  Google Scholar 

  157. McLain RF, Benson DR. Urgent surgical stabilization of spinal fractures in polytrauma patients. Spine (Phila Pa 1976). 1999;24(16):1646–54.

    CAS  Google Scholar 

  158. Cotton BA, et al. Respiratory complications and mortality risk associated with thoracic spine injury. J Trauma. 2005;59(6):1400–7; discussion 1407–9.

    PubMed  Google Scholar 

  159. Kerwin AJ, et al. Best practice determination of timing of spinal fracture fixation as defined by analysis of the National Trauma Data Bank. J Trauma. 2008;65(4):824–30; discussion 830–1.

    PubMed  Google Scholar 

  160. Schinkel C, et al. Timing of thoracic spine stabilization in trauma patients: impact on clinical course and outcome. J Trauma. 2006;61(1):156–60; discussion 160.

    PubMed  Google Scholar 

  161. Bellabarba C, et al. Does early fracture fixation of thoracolumbar spine fractures decrease morbidity or mortality? Spine (Phila Pa 1976). 2010;35 Suppl 9:S138–45.

    Google Scholar 

  162. Kerwin AJ, et al. The effect of early spine fixation on non-neurologic outcome. J Trauma. 2005;58(1):15–21.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Court .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 EFORT

About this entry

Cite this entry

Vincent, C., Court, C. (2014). General Management of Spinal Injuries. In: Bentley, G. (eds) European Surgical Orthopaedics and Traumatology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34746-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34746-7_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34745-0

  • Online ISBN: 978-3-642-34746-7

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics