Skip to main content

From Functional Architectures to Percepts: A Neuromathematical Approach

  • Chapter
Neuromathematics of Vision

Part of the book series: Lecture Notes in Morphogenesis ((LECTMORPH))

Abstract

In this paper we will consider mathematical models of the functional architecture of the primary visual cortex based on Lie groups equipped with sub- Riemannian metrics. We will critically review and clarify our line of work, joining together within an integrative point of view geometric, statistical, and harmonic models. The neurogeometry of the cortex in the SE(2) groups introduced recalling the original paper [12]. Amodal perceptual completion is reconsidered in terms of constitution of minimal surfaces in the geometric space of the functional architecture, and a new Lagrangian field model is introduced to afford the problem of modal perceptual completion [14] of the Kanizsa triangle. The neurogeometric structure is considered also from the a probabilistic point of view and compared with the statistics of co-occurence of edges in natural images following [48]. Finally the problem of perceptual units constitution is introduced by means of a neurally based non linear PCA technique able to perform a spectral decomposition of the neurogeometrical operator and produce the perceptual gestalten [52, 53].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. August, J., Zucker, S.W.: Sketches with curvature: The curve indicator random field and markov processes. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(4), 387–400 (2003)

    Article  Google Scholar 

  2. Barbieri, D., Citti, G., Sanguinetti, G., Sarti, A.: An uncertainty principle underlying the functional architecture of V1. Journal of Physiology Paris 106(5-6), 183–193 (2012)

    Article  Google Scholar 

  3. Barbieri, D., Citti, G.: Reproducing kernel Hilbert spaces of CR functions for the Euclidean Motion group (submitted)

    Google Scholar 

  4. Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform. Part II. Application to distribution theory. Comm. Pure Appl. Math. 20, 1–101 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  5. Barles, G., Georgelin, C.: A simple proof of convergence for an approximation scheme for computing motions by mean curvature. SIAM Journal on Numerical Analysis 32(2), 484–500 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bonfiglioli, A., Uguzzoni, F., Lanconelli, E.:

    Google Scholar 

  7. Bressloff, P.C., Cowan, J.D.: The functional geometry of local and long-range connections in a model of V1. J. Physiol. Paris 97(2-3), 221–236 (2003)

    Article  Google Scholar 

  8. Bressloff, P.C., Cowan, J.D., Golubitsky, M., Thomas, P.J., Wiener, M.: Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex Phil. Trans. Roy. Soc., B 40, 299–330 (2001)

    Article  Google Scholar 

  9. Carruthers, P., Nieto, M.M.: Phase and Angle Variables in Quantum Mechanics. Reviews of Modern Physics 40(2), 411–440 (1968)

    Article  Google Scholar 

  10. Capogna, L., Citti, G., Senni, C., Magnani, G.: Sub-Riemannian heat kernel and mean curvature flow of graphsJFA (2013)

    Google Scholar 

  11. Citti, G., Manfredini, M., Sarti, A.: Neuronal Oscillations in the Visual Cortex: Gamma-convergence to the Riemannian Mumford-Shah Functional. SIAM Journal Mathematical Analysis 35(6), 1394–1419 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Citti, G., Sarti, A.: A cortical based model of perceptual completion in the Roto-Translation space. Journal of Mathematical Imaging and Vision 24(3), 307–326 (2006)

    Article  MathSciNet  Google Scholar 

  13. Citti, G., Sarti, A.: A cortical based model of perceptual completion in the Roto-Translation space. Journal of Mathematical Imaging and Vision 24(3), 307–326 (2006)

    Article  MathSciNet  Google Scholar 

  14. Citti, G., Sarti, A.: A Gauge Field model of modal completion (submitted)

    Google Scholar 

  15. Cohen-Tannoudji, C., Dui, B., Laloe, F.: Quantum Mechanics. John Wiley & Sons (1978)

    Google Scholar 

  16. Crair, M., Ruthazer, E., Gillespie, D., Stryker, M.: Ocular Dominance Peaks at Pinwheel Center Singularities of the Orientation Map in Cat Visual Cortex. J. Neurophysiol. 77(6), 3381–3385 (1997)

    Google Scholar 

  17. Daugman, J.G.: Uncertainty-relation for resolution in space, spatial frequency and orientation optimized by two dimensional visual cortical filters. J. Opt. Soc. Amer. 2(7), 1160–1169 (1985)

    Article  Google Scholar 

  18. De Angelis, G.C., Ozhawa, I., Freeman, R.D.: Receptive-field dynamics in the central visual pathways. Trends Neurosci. 18(10), 451–458 (1995)

    Article  Google Scholar 

  19. Duits, R., Franken, E.M.: Left invariant parabolic evolution equations on SE(2) and contour enhancement via invertible orientation scores, part I: Linear left-invariant diffusion equations on SE(2). Q. Appl. Math. 68, 255–292 (2010)

    MATH  MathSciNet  Google Scholar 

  20. Duits, R., Franken, E.M.: Left invariant parabolic evolution equations on SE(2) and contour enhancement via invertible orientation scores, part II: Nonlinear left-invariant diffusion equations on invertible orientation scores. Q. Appl. Math. 68, 293–331 (2010)

    MATH  MathSciNet  Google Scholar 

  21. Duits, R., Führ, H., Janssen, B., Bruurmijn, M., Florack, L., Van Assen, H.: Evolution equations on Gabor transforms and their applications. arXiv:1110.6087 (2011)

    Google Scholar 

  22. Evans, L.C.: Convergence of an algorithm for mean curvature motion. Indiana Univ. Math. J. 42(2), 533–557 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  23. Field, D.J., Hayes, A., Hess, R.F.: Contour integration by the human visual system: evidence for a local Association Field. Vision Research 33, 173–193 (1993)

    Article  Google Scholar 

  24. Folland, G.: Harmonic analysis on phase space. Princeton University Press (1989)

    Google Scholar 

  25. Franken, E., Duits, R., ter Haar Romeny, B.M.: Nonlinear Diffusion on the 2D Euclidean Motion Group. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 461–472. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  26. Georgiev, T.: Covariant derivatives and vision. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 56–69. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  27. Georgiev, T.: Vision, healing brush, and fibre bundles. In: Proceedings of SPIE - The International Society for Optical Engineering, vol. 5666, p. 33, pp. 293–305 (2005)

    Google Scholar 

  28. Gray, C.M., König, P., Engel, A.K., Singer, W.: Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338, 334–337 (1989)

    Article  Google Scholar 

  29. Hladky, R., Pauls, S.: Minimal Surfaces in the Roto-Translation Group with Applications to a Neuro-Biological Image Completion Model. Journal of Mathematical Image and Vision 36, 1–27 (2010)

    Article  MathSciNet  Google Scholar 

  30. Hoffman, W.C.: The visual cortex is a contact bundle. Applied Mathematics and Computation 32, 137–167 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  31. Horn, B.K.P.: Determining lightness from an image. Comput. Graph. Image Process., 277–299 (1974)

    Google Scholar 

  32. Hubel, D.H.: Eye, Brain and Vision. Scientific American Library, New York (1988)

    Google Scholar 

  33. Hubel, D.H., Wiesel, T.N.: Ferrier lecture: Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society of London Series B 198(1130), 1–59 (1977)

    Article  Google Scholar 

  34. Kanizsa, G.: Grammatica del vedere. Il Mulino, Bologna (1980)

    Google Scholar 

  35. Kimmell, R., Elad, M., Shaked, D., Keshet, R., Sobel, I.: A Variational Framework for Retinex. International Journal of Computer Vision 52(1), 7–23 (2003)

    Article  Google Scholar 

  36. Lee, T.S.: Image Representation Using 2D Gabor Wavelets. IEEE Transection of Pattern Analysis and Machine Intelligence 18(10), 959–971 (1996)

    Article  Google Scholar 

  37. Land, E.H.: The Retinex theory of color vision. Scientific American 237(6), 108–128 (1977)

    Article  MathSciNet  Google Scholar 

  38. Land, E., McCann, J.: Lightness and Retinex theory. J. Opt. Soc. Amer. 61(1), 1–11 (1971)

    Article  Google Scholar 

  39. Marr, D.: Vision. Freeman (1982)

    Google Scholar 

  40. Robert, C.P., Casella, G.: Monte Carlo statistical methods, 2nd edn. Springer (2004)

    Google Scholar 

  41. Niebur, E., Wörgötter, F.: Design Principles of Columnar Organization in Visual Cortex. Neural Computation 4(6), 602–614 (1994)

    Article  Google Scholar 

  42. Merriman, B., Bence, J., Osher, S.J.: Diffusion generated motion by mean curvature. In: Taylor, J. (ed.) Proceedings of the Computational Crystal Growers Workshop, pp. 73–83. AMS, Providence (1992)

    Google Scholar 

  43. Morel, J.-M.: A PDE Formalization of Retinex Theory. IEEE Transactions on Image Processing 19(11) (2010)

    Google Scholar 

  44. Mumford, D.: Elastica and computer vision. In: Algebraic Geometry and its Applications, West Lafayette, IN, pp. 491–506. Springer, New York (1990, 1994)

    Google Scholar 

  45. Perona, P., Freeman, W.T.: A factorization approach to grouping. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 655–670. Springer, Heidelberg (1998)

    Google Scholar 

  46. Petitot, J., Tondut, Y.: Tondut, Vers une Neurogeometrie. Fibrations corticales, structures de contact et contours subjectifs modaux, Mathematiques. Informatique et Sciences Humaines, vol. 145, pp. 5–101. EHESS, CAMS, Paris (1999)

    Google Scholar 

  47. Petitot, J., Varela, F., Pachoud, B., Roy, J.-M.: Naturalizing Phenomenology: Issues in Contemporary Phenomenology and Cognitive Science. Stanford University Press (1999)

    Google Scholar 

  48. Sanguinetti, G., Citti, G., Sarti, A.: A Stochastic Model for Edges in Natural Images using Lie Groups. To appear in Journal of Vision (2010)

    Google Scholar 

  49. Sarti, A., Citti, G., Petitot, J.: The Symplectic Structure of the Primary Visual Cortex. Biol. Cybern. 98, 33–48 (2008)

    Google Scholar 

  50. Sarti, A., Citti, G., Petitot, J.: Functional geometry of the horizontal connectivity in the primary visual cortex. Journal of Physiology-Paris 103(1-2), 37–45 (2009)

    Article  Google Scholar 

  51. Sarti, A., Citti, G., Manfredini, M.: From Neural Oscillations to Variational Problems in the Visual Cortex. Journal of Physiology Paris 97(2-3), 379–385 (2003)

    Article  Google Scholar 

  52. Sarti, A., Citti, G.: On the origin and nature of neurogeometry. La Nuova Critica (2011)

    Google Scholar 

  53. Sarti, A., Citti, G.: Visual perceptual units as constrained hallucinations (submitted)

    Google Scholar 

  54. Shi, J., Malik, J.: Normalized cuts and image segmentation. In: Proc. IEEE Conf. Comp. Vis. Pat. Rec., pp. 731–737 (1997)

    Google Scholar 

  55. Sugiura, M.: Unitary representations and harmonic analysis, an introduction. Elsevier (1990)

    Google Scholar 

  56. Wang, D.: Emergent synchrony in locally coupled neural oscillators. IEEE Trans. Neural Networks 6, 941–948 (1995)

    Article  Google Scholar 

  57. Webb, B., Tinsley, C.J., Vincent, C.J., Derrington, A.M.: Spatial Distribution of Suppressive Signals Outside the Classical Receptive Field in Lateral Geniculate Nucleus. J. Neurophysiol. 94, 1789–1797 (2005)

    Google Scholar 

  58. Weiss, Y.: Segmentation using eigenvectors: a unifying view. In: Proc. IEEE Int. Conf. on Comp. Vis., pp. 975–982 (1999)

    Google Scholar 

  59. Williams, L.R., Jacobs, D.W.: Local Parallel Computation of Stochastic Completion Fields. Neural Comp. 9(4), 859–881 (1997)

    Article  Google Scholar 

  60. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972)

    Article  Google Scholar 

  61. Zucker, S.W.: Differential geometry from the Frenet point of view: boundary detection, stereo, texture and color. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in Computer Vision, pp. 357–373. Springer, US (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Citti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Citti, G., Sarti, A. (2014). From Functional Architectures to Percepts: A Neuromathematical Approach. In: Citti, G., Sarti, A. (eds) Neuromathematics of Vision. Lecture Notes in Morphogenesis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34444-2_4

Download citation

Publish with us

Policies and ethics