Skip to main content

Preoperative Blood Oxygen Level-Dependent (BOLD) Functional Magnetic Resonance Imaging (fMRI) of Motor and Somatosensory Function

  • Chapter
  • First Online:
fMRI

Abstract

Surgery in or around the “central region” entails a high risk for intraprocedural damage of the precentral and postcentral gyrus with consecutive motor and sensory deficits that can impact the patient’s quality of life considerably. By noninvasively providing a precise localization of the different representations of the human body in relation to the surgical target, BOLD-fMRI facilitates the selection of candidates for surgery as well as the planning and performance of more aggressive but safe and function-preserving resections (Petrella et al. 2006). This also implies that fMRI plays a role in identifying those patients who are not the ideal candidates for surgery and who may profit more from less invasive therapeutic options like radiation or chemotherapy. Such patients often present with diffusely infiltrating or recurrent malignancies of the brain, and a complete resection and a surgical cure cannot be achieved. In this situation, deficits associated with the treatment should be kept to a minimum. Prior to treatment, fMRI provides important diagnostic information to evaluate the risks and chances on an individual basis and to optimize the therapeutic strategy accordingly. In addition, functional landmarks are helpful to plan partial resections or biopsies. This also applies for awake craniotomies or epilepsy surgery. Hence, the majority of preoperative fMRI studies are performed in patients with brain tumors and epilepsies to preserve the adjacent eloquent brain areas. In nonresective neurosurgery, also fMRI can be applied, for example, in patients with medically intractable chronic pain. Here, it has been demonstrated that fMRI facilitates the placement of stimulation electrodes over the motor cortex (Pirotte et al. 2005a, b). Ideally, preoperative fMRI studies are conducted for functional neuronavigation and in combination with diffusion tensor imaging (DTI), to also visualize important fiber bundles during surgery, for example, the pyramidal tract (Nimsky et al. 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achten E, Jackson GD et al (1999) Presurgical evaluation of the motor hand area with functional MR imaging in patients with tumors and dysplastic lesions. Radiology 210(2):529–538

    CAS  PubMed  Google Scholar 

  • Alkadhi H, Kollias SS et al (2000) Plasticity of the human motor cortex in patients with arteriovenous malformations: a functional MR imaging study. AJNR Am J Neuroradiol 21(8):1423–1433

    CAS  PubMed  Google Scholar 

  • Atlas SW, Howard RS II et al (1996) Functional magnetic resonance imaging of regional brain activity in patients with intracerebral gliomas: findings and implications for clinical management. Neurosurgery 38(2):329–338

    CAS  PubMed  Google Scholar 

  • Bandettini PA, Wong EC et al (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25(2):390–397

    CAS  PubMed  Google Scholar 

  • Baumann SB, Noll DC et al (1995) Comparison of functional magnetic resonance imaging with positron emission tomography and magnetoencephalography to identify the motor cortex in a patient with an arteriovenous malformation. J Image Guid Surg 1(4):191–197

    CAS  PubMed  Google Scholar 

  • Belliveau JW, Kennedy DN et al (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254(5032):716–719

    CAS  PubMed  Google Scholar 

  • Bittar RG, Olivier A et al (1999) Presurgical motor and somatosensory cortex mapping with functional magnetic resonance imaging and positron emission tomography. J Neurosurg 91(6):915–921

    CAS  PubMed  Google Scholar 

  • Bittar RG, Olivier A et al (2000) Cortical motor and somatosensory representation: effect of cerebral lesions. J Neurosurg 92(2):242–248

    CAS  PubMed  Google Scholar 

  • Carpentier AC, Constable RT et al (2001) Patterns of functional magnetic resonance imaging activation in ­association with structural lesions in the rolandic region: a classification system. J Neurosurg 94(6):946–954

    CAS  PubMed  Google Scholar 

  • Cosgrove GR, Buchbinder BR et al (1996) Functional magnetic resonance imaging for intracranial navigation. Neurosurg Clin N Am 7(2):313–322

    CAS  PubMed  Google Scholar 

  • Duffau H, Capelle L et al (1999) Intra-operative direct electrical stimulations of the central nervous system: the Salpetriere experience with 60 patients. Acta Neurochir (Wien) 141(11):1157–1167

    CAS  Google Scholar 

  • Dymarkowski S, Sunaert S et al (1998) Functional MRI of the brain: localisation of eloquent cortex in focal brain lesion therapy. Eur Radiol 8(9):1573–1580

    CAS  PubMed  Google Scholar 

  • Feigl GC, Safavi-Abbasi S et al (2008) Real-time 3 T fMRI data of brain tumour patients for intra-operative localization of primary motor areas. Eur J Surg Oncol 34(6):708–715

    CAS  PubMed  Google Scholar 

  • Fesl G, Moriggl B et al (2003) Inferior central sulcus: variations of anatomy and function on the example of the motor tongue area. Neuroimage 20(1):601–610

    CAS  PubMed  Google Scholar 

  • Frahm J, Merboldt KD et al (1994) Brain or vein – oxygenation or flow? On signal physiology in functional MRI of human brain activation. NMR Biomed 7(1–2):45–53

    CAS  PubMed  Google Scholar 

  • Gasser T, Ganslandt O et al (2005) Intraoperative functional MRI: implementation and preliminary experience. Neuroimage 26(3):685–693

    PubMed  Google Scholar 

  • Geerts J, Martens M et al (2007) Functional magnetic resonance imaging for preoperative localisation of eloquent brain areas relative to brain tumours: clinical implementation in a regional hospital. JBR-BTR 90(4):258–263

    CAS  PubMed  Google Scholar 

  • Golaszewski SM, Zschiegner F et al (2002) A new pneumatic vibrator for functional magnetic resonance imaging of the human sensorimotor cortex. Neurosci Lett 324(2):125–128

    CAS  PubMed  Google Scholar 

  • Golaszewski SM, Siedentopf CM et al (2004) Modulatory effects on human sensorimotor cortex by whole-hand afferent electrical stimulation. Neurology 62(12):2262–2269

    CAS  PubMed  Google Scholar 

  • Golaszewski SM, Siedentopf CM et al (2006) Human brain structures related to plantar vibrotactile stimulation: a functional magnetic resonance imaging study. Neuroimage 29(3):923–929

    PubMed  Google Scholar 

  • Haberg A, Kvistad KA et al (2004) Preoperative blood oxygen level-dependent functional magnetic resonance imaging in patients with primary brain tumors: clinical application and outcome. Neurosurgery 54(4):902–914; discussion 914–915

    PubMed  Google Scholar 

  • Hajnal JV, Myers R et al (1994) Artifacts due to stimulus correlated motion in functional imaging of the brain. Magn Reson Med 31(3):283–291

    CAS  PubMed  Google Scholar 

  • Hall WA, Liu H et al (2005) Functional magnetic resonance imaging-guided resection of low-grade gliomas. Surg Neurol 64(1):20–27; discussion 27

    PubMed  Google Scholar 

  • Hirsch J, Ruge MI et al (2000) An integrated functional magnetic resonance imaging procedure for preoperative mapping of cortical areas associated with tactile, motor, language, and visual functions. Neurosurgery 47(3):711–721; discussion 721–722

    CAS  PubMed  Google Scholar 

  • Hoeller M, Krings T et al (2002) Movement artefacts and MR BOLD signal increase during different paradigms for mapping the sensorimotor cortex. Acta Neurochir (Wien) 144(3):279–284; discussion 284

    CAS  Google Scholar 

  • Holodny AI, Schulder M et al (1999) Decreased BOLD functional MR activation of the motor and sensory cortices adjacent to a glioblastoma multiforme: implications for image-guided neurosurgery. AJNR Am J Neuroradiol 20(4):609–612

    CAS  PubMed  Google Scholar 

  • Holodny AI, Schulder M et al (2000) The effect of brain tumors on BOLD functional MR imaging activation in the adjacent motor cortex: implications for image-guided neurosurgery. AJNR Am J Neuroradiol 21(8):1415–1422

    CAS  PubMed  Google Scholar 

  • Holodny AI, Schwartz TH et al (2001) Tumor involvement of the corticospinal tract: diffusion magnetic resonance tractography with intraoperative correlation. J Neurosurg 95(6):1082

    CAS  PubMed  Google Scholar 

  • Hou BL, Bradbury M et al (2006) Effect of brain tumor neovasculature defined by rCBV on BOLD fMRI activation volume in the primary motor cortex. Neuroimage 32(2):489–497

    PubMed  Google Scholar 

  • Jack CR, Thompson PM et al (1994) Sensory motor cortex: correlation of presurgical mapping with functional MR imaging and invasive cortical mapping. Radiology 190(1):85–92

    PubMed  Google Scholar 

  • Jacobs AH, Kracht LW et al (2005) Imaging in neurooncology. NeuroRx 2(2):333–347

    PubMed  Google Scholar 

  • Kampe KK, Jones RA et al (2000) Frequency dependence of the functional MRI response after electrical median nerve stimulation. Hum Brain Mapp 9(2):106–114

    CAS  PubMed  Google Scholar 

  • Kim MJ, Holodny AI et al (2005) The effect of prior surgery on blood oxygen level-dependent functional MR imaging in the preoperative assessment of brain tumors. AJNR Am J Neuroradiol 26(8):1980–1985

    PubMed  Google Scholar 

  • Kokkonen SM, Kiviniemi V et al (2005) Effect of brain surgery on auditory and motor cortex activation: a preliminary functional magnetic resonance imaging study. Neurosurgery 57(2):249–256; discussion 249–256

    PubMed  Google Scholar 

  • Krainik A, Lehericy S et al (2001) Role of the supplementary motor area in motor deficit following medial frontal lobe surgery. Neurology 57(5):871–878

    CAS  PubMed  Google Scholar 

  • Krainik A, Lehericy S et al (2003) Postoperative speech disorder after medial frontal surgery: role of the supplementary motor area. Neurology 60(4):587–594

    CAS  PubMed  Google Scholar 

  • Krainik A, Duffau H et al (2004) Role of the healthy hemisphere in recovery after resection of the supplementary motor area. Neurology 62(8):1323–1332

    CAS  PubMed  Google Scholar 

  • Krings T, Reul J et al (1998) Functional magnetic resonance mapping of sensory motor cortex for image-guided neurosurgical intervention. Acta Neurochir (Wien) 140(3):215–222

    CAS  Google Scholar 

  • Krings T, Erberich SG et al (1999) MR blood oxygenation level-dependent signal differences in parenchymal and large draining vessels: implications for functional MR imaging. AJNR Am J Neuroradiol 20(10):1907–1914

    CAS  PubMed  Google Scholar 

  • Krings T, Reinges MH et al (2001) Functional MRI for presurgical planning: problems, artefacts, and solution strategies. J Neurol Neurosurg Psychiatry 70(6):749–760

    CAS  PubMed  Google Scholar 

  • Krings T, Reinges MH et al (2002a) Factors related to the magnitude of T2* MR signal changes during functional imaging. Neuroradiology 44(6):459–466

    CAS  PubMed  Google Scholar 

  • Krings T, Topper R et al (2002b) Activation in primary and secondary motor areas in patients with CNS neoplasms and weakness. Neurology 58(3):381–390

    CAS  PubMed  Google Scholar 

  • Krishnan R, Raabe A et al (2004) Functional magnetic resonance imaging-integrated neuronavigation: correlation between lesion-to-motor cortex distance and outcome. Neurosurgery 55(4):904–914; discussion 914–915

    PubMed  Google Scholar 

  • Kurth R, Villringer K et al (1998) FMRI assessment of somatotopy in human Brodmann area 3b by electrical finger stimulation. Neuroreport 9(2):207–212

    CAS  PubMed  Google Scholar 

  • Kwong KK, Belliveau JW et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89(12):5675–5679

    CAS  PubMed  Google Scholar 

  • Lazar RM, Marshall RS et al (1997) Anterior translocation of language in patients with left cerebral arteriovenous malformation. Neurology 49(3):802–808

    CAS  PubMed  Google Scholar 

  • Lee CC, Ward HA et al (1999) Assessment of functional MR imaging in neurosurgical planning. AJNR Am J Neuroradiol 20(8):1511–1519

    CAS  PubMed  Google Scholar 

  • Lehericy S, Duffau H et al (2000) Correspondence between functional magnetic resonance imaging somatotopy and individual brain anatomy of the ­central region: comparison with intraoperative stimulation in patients with brain tumors. J Neurosurg 92(4):589–598

    CAS  PubMed  Google Scholar 

  • Lehericy S, Biondi A et al (2002) Arteriovenous brain malformations: is functional MR imaging reliable for studying language reorganization in patients? Initial observations. Radiology 223(3):672–682

    PubMed  Google Scholar 

  • Liu G, Ogawa S (2006) EPI image reconstruction with correction of distortion and signal losses. J Magn Reson Imaging 24(3):683–689

    PubMed  Google Scholar 

  • Liu WC, Feldman SC et al (2005) The effect of tumour type and distance on activation in the motor cortex. Neuroradiology 47(11):813–819

    PubMed  Google Scholar 

  • Ludemann L, Forschler A et al (2006) BOLD signal in the motor cortex shows a correlation with the blood volume of brain tumors. J Magn Reson Imaging 23(4):435–443

    PubMed  Google Scholar 

  • Majos A, Tybor K et al (2005) Cortical mapping by functional magnetic resonance imaging in patients with brain tumors. Eur Radiol 15(6):1148–1158

    PubMed  Google Scholar 

  • Menon RS, Ogawa S et al (1995) BOLD based functional MRI at 4 Tesla includes a capillary bed contribution: echo-planar imaging correlates with previous optical imaging using intrinsic signals. Magn Reson Med 33(3):453–459

    CAS  PubMed  Google Scholar 

  • Moller M, Freund M et al (2005) Real time fMRI: a tool for the routine presurgical localisation of the motor cortex. Eur Radiol 15(2):292–295

    CAS  PubMed  Google Scholar 

  • Mueller WM, Yetkin FZ et al (1996) Functional magnetic resonance imaging mapping of the motor cortex in patients with cerebral tumors. Neurosurgery 39(3):515–520; discussion 520–521

    CAS  PubMed  Google Scholar 

  • Nimsky C, Ganslandt O et al (2006) Intraoperative visualization for resection of gliomas: the role of functional neuronavigation and intraoperative 1.5 T MRI. Neurol Res 28(5):482–487

    PubMed  Google Scholar 

  • Ogawa S, Menon RS et al (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 64(3):803–812

    CAS  PubMed  Google Scholar 

  • Ojemann G, Ojemann J et al (1989) Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J Neurosurg 71(3):316–326

    CAS  PubMed  Google Scholar 

  • Osborn A (2004) Diagnostic imaging: brain. Amirsys, Salt Lake City

    Google Scholar 

  • Ozdoba C, Nirkko AC et al (2002) Whole-brain functional magnetic resonance imaging of cerebral arteriovenous malformations involving the motor pathways. Neuroradiology 44(1):1–10

    CAS  PubMed  Google Scholar 

  • Parmar H, Sitoh YY et al (2004) Combined magnetic resonance tractography and functional magnetic resonance imaging in evaluation of brain tumors involving the motor system. J Comput Assist Tomogr 28(4):551–556

    PubMed  Google Scholar 

  • Petrella JR, Shah LM et al (2006) Preoperative functional MR imaging localization of language and motor areas: effect on therapeutic decision making in patients with potentially resectable brain tumors. Radiology 240(3):793–802

    PubMed  Google Scholar 

  • Pirotte B, Goldman S et al (2005a) Integration of [11C]methionine-positron emission tomographic and magnetic resonance imaging for image-guided surgical resection of infiltrative low-grade brain tumors in children. Neurosurgery 57(1 Suppl):128–139

    PubMed  Google Scholar 

  • Pirotte B, Voordecker P et al (2005b) Combination of functional magnetic resonance imaging-guided neuronavigation and intraoperative cortical brain mapping improves targeting of motor cortex stimulation in neuropathic pain. Neurosurgery 56(2 Suppl):344–359; discussion 344–359

    PubMed  Google Scholar 

  • Priest AN, De Vita E et al (2006) EPI distortion correction from a simultaneously acquired distortion map using TRAIL. J Magn Reson Imaging 23(4):597–603

    PubMed  Google Scholar 

  • Puce A, Constable RT et al (1995) Functional magnetic resonance imaging of sensory and motor cortex: ­comparison with electrophysiological localization. J Neurosurg 83(2):262–270

    CAS  PubMed  Google Scholar 

  • Pujol J, Conesa G et al (1996) Presurgical identification of the primary sensorimotor cortex by functional magnetic resonance imaging. J Neurosurg 84(1):7–13

    CAS  PubMed  Google Scholar 

  • Pujol J, Conesa G et al (1998) Clinical application of functional magnetic resonance imaging in presurgical identification of the central sulcus. J Neurosurg 88(5):863–869

    CAS  PubMed  Google Scholar 

  • Ramsey NF, Sommer IE et al (2001) Combined analysis of language tasks in fMRI improves assessment of hemispheric dominance for language functions in individual subjects. Neuroimage 13(4):719–733

    CAS  PubMed  Google Scholar 

  • Reinges MH, Krings T et al (2005) Prospective demonstration of short-term motor plasticity following acquired central pareses. Neuroimage 24(4):1248–1255

    PubMed  Google Scholar 

  • Roessler K, Donat M et al (2005) Evaluation of preoperative high magnetic field motor functional MRI (3 Tesla) in glioma patients by navigated electrocortical stimulation and postoperative outcome. J Neurol Neurosurg Psychiatry 76(8):1152–1157

    CAS  PubMed  Google Scholar 

  • Rolls HK, Yoo SS et al (2007) Rater-dependent accuracy in predicting the spatial location of functional centers on anatomical MR images. Clin Neurol Neurosurg 109(3):225–235

    PubMed  Google Scholar 

  • Roux FE, Ranjeva JP et al (1997) Motor functional MRI for presurgical evaluation of cerebral tumors. Stereotact Funct Neurosurg 68(1–4 Pt 1):106–111

    CAS  PubMed  Google Scholar 

  • Roux FE, Boulanouar K et al (1999a) Cortical intraoperative stimulation in brain tumors as a tool to evaluate spatial data from motor functional MRI. Invest Radiol 34(3):225–229

    CAS  PubMed  Google Scholar 

  • Roux FE, Boulanouar K et al (1999b) Usefulness of motor functional MRI correlated to cortical mapping in rolandic low grade astrocytomas. Acta Neurochir (Wien) 141(1):71–79

    CAS  Google Scholar 

  • Rutten GJ, Ramsey NF et al (2002) Interhemispheric reorganization of motor hand function to the primary motor cortex predicted with functional magnetic resonance imaging and transcranial magnetic stimulation. J Child Neurol 17(4):292–297

    PubMed  Google Scholar 

  • Schlosser MJ, McCarthy G et al (1997) Cerebral vascular malformations adjacent to sensorimotor and visual cortex. Functional magnetic resonance imaging studies before and after therapeutic intervention. Stroke 28(6):1130–1137

    CAS  PubMed  Google Scholar 

  • Schonberg T, Pianka P et al (2006) Characterization of displaced white matter by brain tumors using ­combined DTI and fMRI. Neuroimage 30(4):1100–1111

    PubMed  Google Scholar 

  • Schreiber A, Hubbe U et al (2000) The influence of gliomas and nonglial space-occupying lesions on blood-oxygen-level-dependent contrast enhancement. AJNR Am J Neuroradiol 21(6):1055–1063

    CAS  PubMed  Google Scholar 

  • Schwindack C, Siminotto E et al (2005) Real-time functional magnetic resonance imaging (rt-fMRI) in patients with brain tumours: preliminary findings using motor and language paradigms. Br J Neurosurg 19(1):25–32

    CAS  PubMed  Google Scholar 

  • Shinoura N, Yamada R et al (2005) Preoperative fMRI, tractography and continuous task during awake surgery for maintenance of motor function following surgical resection of metastatic tumor spread to the primary motor area. Minim Invasive Neurosurg 48(2):85–90

    CAS  PubMed  Google Scholar 

  • Shinoura N, Suzuki Y et al (2006) Restored activation of primary motor area from motor reorganization and improved motor function after brain tumor resection. AJNR Am J Neuroradiol 27(6):1275–1282

    CAS  PubMed  Google Scholar 

  • Steger TR, Jackson EF (2004) Real-time motion detection of functional MRI data. J Appl Clin Med Phys 5(2):64–70

    PubMed  Google Scholar 

  • Stippich C (2005) Clinical functional magnetic resonance imaging: basic principles and clinical applications. Radiol up2date 5:317–336

    Google Scholar 

  • Stippich C (ed) (2007) Clinical functional MRI: presurgical functional neuroimaging. Springer, New York. ISBN 978-3-540-24469-1

    Google Scholar 

  • Stippich C, Hofmann R et al (1999) Somatotopic mapping of the human primary somatosensory cortex by fully automated tactile stimulation using functional magnetic resonance imaging. Neurosci Lett 277(1):25–28

    CAS  PubMed  Google Scholar 

  • Stippich C, Kapfer D et al (2000) Robust localization of the contralateral precentral gyrus in hemiparetic patients using the unimpaired ipsilateral hand: a clinical functional magnetic resonance imaging protocol. Neurosci Lett 285(2):155–159

    CAS  PubMed  Google Scholar 

  • Stippich C, Heiland S et al (2002a) Functional magnetic resonance imaging: physiological background, technical aspects and prerequisites for clinical use. Rofo 174(1):43–49

    CAS  PubMed  Google Scholar 

  • Stippich C, Ochmann H et al (2002b) Somatotopic mapping of the human primary sensorimotor cortex during motor imagery and motor execution by functional magnetic resonance imaging. Neurosci Lett 331(1):50–54

    CAS  PubMed  Google Scholar 

  • Stippich C, Kress B et al (2003) Preoperative functional magnetic resonance tomography (FMRI) in patients with rolandic brain tumors: indication, investigation strategy, possibilities and limitations of clinical application. Rofo 175(8):1042–1050

    CAS  PubMed  Google Scholar 

  • Stippich C, Romanowski A et al (2004) Fully automated localization of the human primary somatosensory cortex in one minute by functional magnetic resonance imaging. Neurosci Lett 364(2):90–93

    CAS  PubMed  Google Scholar 

  • Stippich C, Blatow M et al (2007) Global activation of primary motor cortex during voluntary movements in man. Neuroimage 34:1227–1237

    PubMed  Google Scholar 

  • Ternovoi SK, Sinitsyn VE et al (2004) Localization of the motor and speech zones of the cerebral cortex by functional magnetic resonance tomography. Neurosci Behav Physiol 34(5):431–437

    CAS  PubMed  Google Scholar 

  • Thulborn K (2006) Clinical functional magnetic resonance imaging. In: Haacke EM et al (eds) Current protocols in magnetic resonance imaging. Wiley, New York

    Google Scholar 

  • Ulmer JL, Krouwer HG et al (2003) Pseudo-reorganization of language cortical function at fMR imaging: a consequence of tumor-induced neurovascular uncoupling. AJNR Am J Neuroradiol 24(2):213–217

    PubMed  Google Scholar 

  • Ulmer JL, Salvan CV et al (2004) The role of diffusion tensor imaging in establishing the proximity of tumor borders to functional brain systems: implications for preoperative risk assessments and postoperative outcomes. Technol Cancer Res Treat 3(6):567–576

    PubMed  Google Scholar 

  • Van Westen D, Skagerberg G et al (2005) Functional magnetic resonance imaging at 3 T as a clinical tool in patients with intracranial tumors. Acta Radiol 46(6):599–609

    PubMed  Google Scholar 

  • Weiskopf N, Klose U et al (2005) Single-shot compensation of image distortions and BOLD contrast optimization using multi-echo EPI for real-time fMRI. Neuroimage 24(4):1068–1079

    PubMed  Google Scholar 

  • Wienbruch C, Candia V et al (2006) A portable and low-cost fMRI compatible pneumatic system for the investigation of the somatosensensory system in clinical and research environments. Neurosci Lett 398(3):183–188

    CAS  PubMed  Google Scholar 

  • Wirtz CR, Tronnier VM et al (1997) Image-guided neurosurgery with intraoperative MRI: update of frameless stereotaxy and radicality control. Stereotact Funct Neurosurg 68(1–4 Pt 1):39–43

    CAS  PubMed  Google Scholar 

  • Wittek A, Kikinis R et al (2005) Brain shift computation using a fully nonlinear biomechanical model. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv 8(Pt 2):583–590

    Google Scholar 

  • Yousry TA, Schmid UD et al (1997) Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain 120(Pt 1):141–157

    PubMed  Google Scholar 

Download references

Acknowledgment

Text and figures have been reproduced in part from Stippich 2007 with permission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Stippich M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stippich, C. (2013). Preoperative Blood Oxygen Level-Dependent (BOLD) Functional Magnetic Resonance Imaging (fMRI) of Motor and Somatosensory Function. In: Ulmer, S., Jansen, O. (eds) fMRI. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34342-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34342-1_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34341-4

  • Online ISBN: 978-3-642-34342-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics