Skip to main content

Mapping of Recovery from Poststroke Aphasia: Comparison of PET and fMRI

  • Chapter
  • First Online:
fMRI
  • 4331 Accesses

Abstract

Disturbance of neurologic function in disorders of the central nervous system is expressed as an altered activation pattern in functional networks used by specific tasks and can be studied by functional imaging modalities, e.g., positron emission tomography and functional magnetic resonance imaging. Language, a complex brain function, is based on the interplay of a distributed network in which partial functions are executed in various centers, the primary language areas. These areas are hierarchically organized and activated according to the complexity of the specific language task. The specialization of different centers and the lateralization of integrative functions into the dominant (usually left) hemisphere are achieved by collateral and transcallosal inhibition of secondary language areas that are not used normally for performance of a specific language task. Changes in the interaction within the functional network of language are important for the recovery from aphasia after stroke. In particular, studies of changes in the activation patterns during speech tasks have demonstrated that patients with favorable recovery predominantly activate structures in the ipsilateral hemisphere, but some activation was also seen in the right hemisphere. Increased activation within the right hemisphere may be a marker of failed or faulty recovery attempts in the sense of maladaptive plasticity or the breakdown of normal interhemispheric control within the distributed neural network. The role of activation in the right hemisphere for residual language performance can be investigated by combining repetitive transcranial magnetic stimulation (rTMS) with functional imaging [e.g., positron emission tomography (PET)]. These studies suggested a less effective compensatory potential of right-sidednetwork areas. Overactivationof right language homologues may represent a maladaptive strategy by paradoxical functional facilitation as a result of decreased transcallosal inhibition attributable to damage of specialized and lateralized speech areas. Suppression of this paradoxical activation might therefore improve aphasic deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Attwell D, Laughlin SB (2001) An energy budget for ­signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21(10):1133–1145

    Article  CAS  PubMed  Google Scholar 

  • Barwood CH, Murdoch BE et al (2011) Improved language performance subsequent to low-frequency rTMS in patients with chronic non-fluent aphasia post-stroke. Eur J Neurol 18(7):935–943

    Article  CAS  PubMed  Google Scholar 

  • Basso A, Gardelli M et al (1989) The role of the right hemisphere in recovery from aphasia. Two case studies. Cortex 25:555–566

    Article  CAS  PubMed  Google Scholar 

  • Belin P, van Eeckhout P et al (1996) Recovery from nonfluent aphasia after melodic intonation therapy: a PET study. Neurology 47(6):1504–1511

    Article  CAS  PubMed  Google Scholar 

  • Berthier ML, Starkstein SE et al (1991) Transcortical aphasia. Importance of the nonspeech dominant hemisphere in language repetition. Brain 114(Pt 3):1409–1427

    Article  PubMed  Google Scholar 

  • Berthier ML, Green C et al (2006) A randomized, placebo-­controlled study of donepezil in poststroke aphasia. Neurology 67:1687–1689

    Article  CAS  PubMed  Google Scholar 

  • Booth JR, Wood L et al (2007) The role of the basal ganglia and cerebellum in language processing. Brain Res 1133:136–144

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Vikingstad EM et al (1999) Cortical language activation in stroke patients recovering from aphasia with functional MRI. Stroke 30:2331–2340

    Article  CAS  PubMed  Google Scholar 

  • Cappa SF, Perani D et al (1997) A PET follow-up study of recovery after stroke in acute aphasics. Brain Lang 56:55–67

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Classen J et al (1997) Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48:1398–1403

    Article  CAS  PubMed  Google Scholar 

  • Crinion JT, Leff AP (2007) Recovery and treatment of aphasia after stroke: functional imaging studies. Curr Opin Neurol 20:667–673

    Article  PubMed  Google Scholar 

  • Demonet JF, Fiez JA et al (1996) PET studies of phonological processing: a critical reply to Poeppel. Brain Lang 55:352–379

    Article  PubMed  Google Scholar 

  • Feeney DM, Baron JC (1986) Diaschisis. Stroke 17:817–830

    Article  CAS  PubMed  Google Scholar 

  • Fernandez B, Cardebat D et al (2004) Functional MRI follow-up study of language processes in healthy subjects and during recovery in a case of aphasia. Stroke 35:2171–2176

    Article  PubMed  Google Scholar 

  • Ferro JM, Mariano G et al (1999) Recovery from aphasia and neglect. Cerebrovasc Dis 9 (Suppl 5):6–22

    Article  PubMed  Google Scholar 

  • Gainotti G (1993) The riddle of the right hemisphere’s contribution to the recovery of language. Eur J Disord Commun 28:227–246

    Article  CAS  PubMed  Google Scholar 

  • Greener J, Enderby P et al (2001a) Speech and language therapy for aphasia following stroke (Cochrane Review). The Cochrane Library 3 Oxford: Update Software

    Google Scholar 

  • Greener J, Enderby P et al (2001b) Pharmacological treatment for aphasia following stroke. Cochrane Database Syst Rev. 2001;(4):CD000424. Review

    Google Scholar 

  • Heiss WD, Thiel A (2006) A proposed regional hierarchy in recovery of post-stroke aphasia. Brain Lang 98: 118–123

    Article  PubMed  Google Scholar 

  • Heiss WD, Emunds HG et al (1993a) Cerebral glucose metabolism as a predictor of rehabilitation after ischemic stroke. Stroke 24:1784–1788

    Article  CAS  PubMed  Google Scholar 

  • Heiss WD, Kessler J et al (1993b) Cerebral glucose metabolism as a predictor of recovery from aphasia in ischemic stroke. Arch Neurol 50:958–964

    Article  CAS  PubMed  Google Scholar 

  • Heiss WD, Kessler J et al (1999) Differential capacity of left and right hemispheric areas for compensation of poststroke aphasia. Ann Neurol 45:430–438

    Article  CAS  PubMed  Google Scholar 

  • Hickok G, Poeppel D (2007) The cortical organization of speech processing. Nat Rev Neurosci 8:393–402

    Article  CAS  PubMed  Google Scholar 

  • Hillis AE, Kleinman JT et al (2006) Restoring cerebral blood flow reveals neural regions critical for naming. J Neurosci 26:8069–8073

    Article  CAS  PubMed  Google Scholar 

  • Jordan LC, Hillis AE (2006) Disorders of speech and language: aphasia, apraxia and dysarthria. Curr Opin Neurol 19:580–585

    Article  PubMed  Google Scholar 

  • Kakuda W, Abo M et al (2010) Functional MRI-based therapeutic rTMS strategy for aphasic stroke patients: a case series pilot study. Int J Neurosci 120(1):60–66

    Article  PubMed  Google Scholar 

  • Karbe H, Herholz K et al (1989) Regional metabolic correlates of token test results in cortical and subcortical left hemispheric infarction. Neurology 39:1083–1088

    Article  CAS  PubMed  Google Scholar 

  • Karbe H, Kessler J et al (1995) Long-term prognosis of poststroke aphasia studied with positron emission tomography. Arch Neurol 52:186–190

    Article  CAS  PubMed  Google Scholar 

  • Karbe H, Thiel A et al (1998) Brain plasticity in poststroke aphasia: what is the contribution of the right hemisphere? Brain Lang 64:215–230

    Article  CAS  PubMed  Google Scholar 

  • Kessler J, Thiel A et al (2000) Piracetam improves activated blood flow and facilitates ­rehabilitation of poststroke aphasic patients. Stroke 31:2112–2116

    Article  CAS  PubMed  Google Scholar 

  • Knecht S, Floel A et al (2002) Degree of language lateralization determines susceptibility to unilateral brain lesions. Nat Neurosci 5:695–699

    CAS  PubMed  Google Scholar 

  • Kobayashi M, Pascual-Leone A (2003) Transcranial ­magnetic stimulation in neurology. Lancet Neurol 2:145–156

    Article  PubMed  Google Scholar 

  • Kumar R, Masih AK et al (1996) Global aphasia due to thalamic hemorrhage: a case report and review of the literature. Arch Phys Med Rehabil 77:1312–1315

    Article  CAS  PubMed  Google Scholar 

  • Lezak M, Howieson D et al (2004) Neuropsycho-logical assessment. Oxford University Press, Oxford

    Google Scholar 

  • Magistretti PJ (2004) Brain energy metabolism. In: Byrne JH, Roberts JL (eds) From molecules to networks. Elsevier, Amsterdam: 67–90

    Google Scholar 

  • Martin PI, Naeser MA et al (2004) Transcranial magnetic stimulation as a complementary treatment for aphasia. Semin Speech Lang 25:181–191

    Article  PubMed  Google Scholar 

  • Martin PI, Naeser MA et al (2009) Overt naming fMRI pre- and post-TMS: Two nonfluent aphasia patients, with and without improved naming post-TMS. Brain Lang 111(1):20–35

    Article  PubMed  Google Scholar 

  • Metter EJ, Kempler D et al (1987) Cerebellar glucose metabolism in chronic aphasia. Neurology 37:1599–1606

    Article  CAS  PubMed  Google Scholar 

  • Metter EJ, Riege WH et al (1988) Subcortical structures in aphasia. An analysis based on (18 F)-fluorodeoxy­glucose, positron emission tomography, and computed tomography. Arch Neurol 45:1229–1234

    Article  CAS  PubMed  Google Scholar 

  • Metter EJ, Hanson WR et al (1990) Temporoparietal cortex in aphasia. Evidence from positron emission tomography. Arch Neurol 47:1235–1238

    Article  CAS  PubMed  Google Scholar 

  • Mintun MA, Lundstrom BN et al (2001) Blood flow and oxygen delivery to human brain during functional activity: theoretical modeling and experimental data. Proc Natl Acad Sci U S A 98:6859–6864

    Article  CAS  PubMed  Google Scholar 

  • Muller RA, Rothermel RD et al (1998) Brain organization of language after early unilateral lesion: a PET study. Brain Lang 62:422–451

    Article  CAS  PubMed  Google Scholar 

  • Musso M, Weiller C et al (1999) Training-induced brain plasticity in aphasia. Brain 122(Pt 9):1781–1790

    Article  PubMed  Google Scholar 

  • Naeser MA, Martin PI et al (2004) Overt propositional speech in chronic nonfluent aphasia studied with the dynamic susceptibility contrast fMRI method. Neuroimage 22:29–41

    Article  PubMed  Google Scholar 

  • Naeser MA, Martin PI et al (2005a) Improved picture naming in chronic aphasia after TMS to part of right Broca’s area: an open-protocol study. Brain Lang 93:95–105

    Article  PubMed  Google Scholar 

  • Naeser MA, Martin PI et al (2005b) Improved naming after TMS treatments in a chronic, global aphasia patient–case report. Neurocase 11(3):182–193

    Article  PubMed  Google Scholar 

  • Naeser MA, Martin PI et al (2005c) Improved picture naming in chronic aphasia after TMS to part of right Broca’s area: an open-protocol study. Brain Lang 93(1):95–105

    Article  PubMed  Google Scholar 

  • Nudo RJ, Wise BM et al (1996) Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 272:1791–1794

    Article  CAS  PubMed  Google Scholar 

  • Ogawa S, Lee TM et al (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87:9868–9872

    Article  CAS  PubMed  Google Scholar 

  • Ohyama M, Senda M et al (1996) Role of the nondominant hemisphere and undamaged area during word repetition in poststroke aphasics - a PET activation study. Stroke 27:897–903

    Article  CAS  PubMed  Google Scholar 

  • Orgogozo JM (1998) Piracetam in the treatment of acute stroke. CNS Drugs 9:41–49

    Article  CAS  Google Scholar 

  • Pascual-Leone A, Davey N et al (2002) Handbook of transcranial magnetic stimula tion. Arnold Press, London

    Google Scholar 

  • Petersen SE, Fox PT et al (1988) Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331:585–589

    Article  CAS  PubMed  Google Scholar 

  • Price CJ (2000) The anatomy of language: contributions from functional neuroimaging. J Anat 197(Pt 3):335–359

    Article  PubMed  Google Scholar 

  • Price CJ, Crinion J (2005) The latest on functional imaging studies of aphasic stroke. Curr Opin Neurol 18:429–434

    Article  PubMed  Google Scholar 

  • Raboyeau G, De Boissezon X et al (2008) Right hemisphere activation in recovery from aphasia: lesion effect or function recruitment? Neurology 70:290–298

    Article  CAS  PubMed  Google Scholar 

  • Reivich M, Kuhl D et al (1979) The (18 F)fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44:127–137

    Article  CAS  PubMed  Google Scholar 

  • Rosen HJ, Petersen SE et al (2000) Neural correlates of recovery from aphasia after damage to left inferior frontal cortex. Neurology 55:1883–1894

    Article  CAS  PubMed  Google Scholar 

  • Saur D, Lange R et al (2006) Dynamics of language reorganization after stroke. Brain 129:1371–1384

    Article  PubMed  Google Scholar 

  • Siebner HR, Takano B et al (2001) Continuous transcranial magnetic stimulation during positron emission tomography: a suitable tool for imaging regional excitability of the human cortex. Neuroimage 14:883–890

    Article  CAS  Google Scholar 

  • Sokoloff L (1999) Energetics of functional activation in neural tissues. Neurochem Res 24:321–329

    Article  CAS  PubMed  Google Scholar 

  • Thiel A, Herholz K et al (1998) Localization of language-related cortex with 15O-labeled water PET in patients with gliomas. Neuroimage 7:284–295

    Article  CAS  Google Scholar 

  • Thiel A, Herholz K et al (2001) Plasticity of language networks in patients with brain tumors: a PET activation study. Ann Neurol 50:620–629

    Article  CAS  PubMed  Google Scholar 

  • Thiel A, Habedank B et al (2005) Essential language function of the right hemisphere in brain tumor patients. Ann Neurol 57:128–131

    Article  PubMed  Google Scholar 

  • Thiel A, Habedank B et al (2006a) From the left to the right: how the brain compensates progressive loss of language function. Brain Lang 98:57–65

    Article  PubMed  Google Scholar 

  • Thiel A, Schumacher B et al (2006b) Direct demonstration of transcallosal disinhibition in ­language networks. J Cereb Blood Flow Metab 26:1122–1127

    PubMed  Google Scholar 

  • Thompson CK (2000) The neurobiology of language recovery in aphasia. Brain Lang 71:245–248

    Article  CAS  PubMed  Google Scholar 

  • Turner R, Howseman A et al (1997) Functional imaging with magnetic resonance. In: Frackowiak RSJ, Friston KJ, Frith CD, Dolan RJ, Mazziotta JC (eds) Human brain function. Academic, San Diego, pp 467–486

    Google Scholar 

  • Wade DT, Hewer RL et al (1986) Aphasia after stroke: natural history and associated deficits. J Neurol Neurosurg Psychiatry 49:11–16

    Article  CAS  PubMed  Google Scholar 

  • Walker-Batson D, Curtis S et al (2001) A double-blind, pla- cebo-controlled study of the use of amphetamine in the treatment of aphasia. Stroke 32:2093–2098

    Article  CAS  PubMed  Google Scholar 

  • Warburton E, Wise RJS et al (1996) Noun and verb retrieval by normal subjects studies with PET. Brain 119:159–179

    Article  PubMed  Google Scholar 

  • Warburton E, Price CJ et al (1999) Mechanisms of recovery from aphasia: evidence from positron emission tomography studies. J Neurol Neurosurg Psychiatry 66:155–161

    Article  CAS  PubMed  Google Scholar 

  • Wassermann EM, Pascual-Leone A et al (2002) Safety and side-effects of transcranial magnetic stimulation and repetitive transcranialmagnetic stimulation. In: Handbook of transcranial magnetic stimulation. Arnold Press, London, pp 39–49

    Google Scholar 

  • Weiduschat N, Thiel A et al (2011) Effects of repetitive transcranial magnetic stimulation in aphasic stroke: a randomized controlled pilot study. Stroke 42(2):409–415

    Article  PubMed  Google Scholar 

  • Weiller C, Isensee C et al (1995) Recovery from Wernicke’s aphasia: a positron emission tomographic study. Ann Neurol 37:723–732

    Article  CAS  PubMed  Google Scholar 

  • Winhuisen L, Thiel A et al (2005) Role of the contralateral inferior frontal gyrus in recovery of language function in poststroke aphasia: a combined repetitive transcranial magnetic stimulation and positron emission tomography study. Stroke 36:1759–1763

    Article  PubMed  Google Scholar 

  • Wise RJ (2003) Language systems in normal and aphasic human subjects: functional imaging studies and inferences from animal studies. Br Med Bull 65:95–119

    Article  PubMed  Google Scholar 

  • Zahn R, Schwarz M et al (2006) Functional activation studies of word processing in the recovery from aphasia. J Physiol Paris 99:370–385

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolf-Dieter Heiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heiss, WD. (2013). Mapping of Recovery from Poststroke Aphasia: Comparison of PET and fMRI. In: Ulmer, S., Jansen, O. (eds) fMRI. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34342-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34342-1_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34341-4

  • Online ISBN: 978-3-642-34342-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics