Skip to main content

Characterizing and Assessing Human-Like Behavior in Cognitive Architectures

  • Conference paper
Biologically Inspired Cognitive Architectures 2012

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 196))

Abstract

The Turing Test is usually seen as the ultimate goal of Strong Artificial Intelligence (Strong AI). Mainly because of two reasons: first, it is assumed that if we can build a machine that is indistinguishable from a human is because we have completely discovered how a human mind is created; second, such an intelligent machine could replace or collaborate with humans in any imaginable complex task. Furthermore, if such a machine existed it would probably surpass humans in many complex tasks (both physically and cognitively). But do we really need such a machine? Is it possible to build such a system in the short-term? Do we have to settle for the now classical narrow AI approaches? Isn’t there a more reasonable medium term challenge that AI community should aim at? In this paper, we use the paradigmatic Turing test to discuss the implications of aiming too high in the AI research arena; we analyze key factors involved in the design and implementation of variants of the Turing test and we also propose a medium term plausible agenda towards the effective development of Artificial General Intelligence (AGI) from the point of view of artificial cognitive architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adolphs, R.: How do we know the minds of others? Domain-specificity, simulation, and enactive social cognition. Brain Research 1079(1), 25–35 (2006)

    Article  Google Scholar 

  2. Ahn, L.V., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: Using Hard AI Problems for Security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 294–311. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Arrabales, R., Ledezma, A., Sanchis, A.: ConsScale FPS: Cognitive Integration for Improved Believability in Computer Game Bots. In: Believable Bots. Springer (2011a)

    Google Scholar 

  4. Arrabales, R., Muñoz, J., Ledezma, A., Sanchis, A.: A Machine Consciousness Approach to the Design of human-like bots. In: Believable Bots Springer (2011b)

    Google Scholar 

  5. Arrabales, R., Ledezma, A., Sanchis, A.: ConsScale: A Pragmatic Scale for Measuring the Level of Consciousness in Artificial Agents. Journal of Consciousness Studies 17(3-4), 131–164 (2010)

    Google Scholar 

  6. Arrabales, R., Ledezma, A., Sanchis, A.: Assessing and Characterizing the Cognitive Power of Machine Consciousness Implementations. In: Biologically Inspired Cognitive Architectures II. AAAI Fall Symposium Series, p. 16 (2009)

    Google Scholar 

  7. Becchio, C., Bertone, C.: Beyond Cartesian Subjectivism: Neural Correlates of Shared Intentionality. Journal of Consciousness Studies 12(7), 20–30 (2005)

    Google Scholar 

  8. Boden, M.A.: Mind as Machine: A History of Cognitive Science. Oxford University Press, NY (2006)

    Google Scholar 

  9. Colby, K.M.: Modeling a paranoid mind. Behavioral and Brain Sciences 4(04), 515 (1981)

    Article  Google Scholar 

  10. Freeman, W.J.: The Neurodynamics of Intentionality in Animal Brains Provide a Basis for Constructing Devices that are Capable of Intelligent Behavior. In: NIST Workshop on Metrics for Intelligence: Development of Criteria for Machine Intelligence. National Institute of Standards and Technology (2000)

    Google Scholar 

  11. Gallese, V., Goldman, A.: Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences 2(12), 493–501 (1998)

    Article  Google Scholar 

  12. Haikonen, P.O.A.: Reflections of Consciousness: The Mirror Test. In: Proceedings of the 2007 AAAI Fall Symposium on Consciousness and Artificial Intelligence, pp. 67–71 (2007)

    Google Scholar 

  13. Harnad, S.: The Turing Test is not a trick: Turing indistinguishability is a scientific criterion. SIGART Bull. 3(4), 9–10 (1992)

    Article  Google Scholar 

  14. Harnad, S., Scherzer, P.: First, scale up to the robotic Turing test, then worry about feeling. Artificial Intelligence in Medicine 44(2), 83 (2008)

    Article  Google Scholar 

  15. Hingston, P.: A Turing Test for Computer Game Bots. IEEE Transactions on Computational Intelligence and AI in Games, 169–186 (September 2009)

    Google Scholar 

  16. Karpov, I., Schrum, J., Miikulainen, R.: Believable Bots via Human Trace Data. In: Hingston, P. (ed.) Believable Bots. Elsevier (2011)

    Google Scholar 

  17. Kojima, A., Hirono, D., Sato, T., Murakami, S., Thawonmas, R.: Believable Bots via Multiobjective Neuroevolution. In: Hingston, P. (ed.) Believable Bots. Elsevier (2011)

    Google Scholar 

  18. Nareyek, A.: AI in Computer Games. Queue 1(10), 58–65 (2004)

    Article  Google Scholar 

  19. Oppy, G., Dowe, D.: The Turing Test. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (Spring 2011)

    Google Scholar 

  20. Pelphrey, K.A., Morris, J.P., McCarthy, G.: Grasping the Intentions of Others: The Perceived Intentionality of an Action Influences Activity in the Superior Temporal Sulcus during Social Perception. Journal of Cognitive Neuroscience 16(10), 1706–1716 (2004)

    Article  Google Scholar 

  21. Perner, J., Lang, B.: Development of theory of mind and executive control. Trends in Cognitive Sciences 3(9), 337–344 (1999)

    Article  Google Scholar 

  22. Takeno, J., Inaba, K., Suzuki, T.: Experiments and examination of mirror image cognition using a small robot. In: Proceedings of the 2005 IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 493–498 (2005)

    Google Scholar 

  23. Tomasello, M., Carpenter, M.: Shared intentionality. Developmental Science 10(1), 121–125 (2007)

    Article  Google Scholar 

  24. Turing, A.: Computing Machinery and Intelligence. Mind (49), 433–460 (1950)

    Google Scholar 

  25. Vygotsky, L.S.: Mind in Society: The Development of Higher Psychological Processes. Harvard University Press (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arrabales, R., Ledezma, A., Sanchis, A. (2013). Characterizing and Assessing Human-Like Behavior in Cognitive Architectures. In: Chella, A., Pirrone, R., Sorbello, R., Jóhannsdóttir, K. (eds) Biologically Inspired Cognitive Architectures 2012. Advances in Intelligent Systems and Computing, vol 196. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34274-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34274-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34273-8

  • Online ISBN: 978-3-642-34274-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics