Skip to main content

On Globally Optimal Local Modeling: From Moving Least Squares to Over-parametrization

  • Chapter
  • First Online:
Innovations for Shape Analysis

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 3132 Accesses

Abstract

This paper discusses a variational methodology, which involves locally modeling of data from noisy samples, combined with global model parameter regularization. We show that this methodology encompasses many previously proposed algorithms, from the celebrated moving least squares methods to the globally optimal over-parametrization methods recently published for smoothing and optic flow estimation. However, the unified look at the range of problems and methods previously considered also suggests a wealth of novel global functionals and local modeling possibilities. Specifically, we show that a new non-local variational functional provided by this methodology greatly improves robustness and accuracy in local model recovery compared to previous methods. The proposed methodology may be viewed as a basis for a general framework for addressing a variety of common problem domains in signal and image processing and analysis, such as denoising, adaptive smoothing, reconstruction and segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: design of dictionaries for sparse representation. In: Proceedings of SPARS’05, Rennes, pp. 9–12 (2005)

    Google Scholar 

  2. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T.: Point set surfaces. In: IEEE Visualization 2001, pp. 21–28. IEEE Computer Society, Piscataway (2001)

    Google Scholar 

  3. Ambrosio, L., Tortorelli, V.M.: Approximation of functional depending on jumps by elliptic functional via Γ-convergence. Commun. Pure Appl. Math. 43(8), 999–1036 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amenta, N., Kil, Y.J.: Defining point-set surfaces. ACM Trans. Graph. 23, 264–270 (2004)

    Article  Google Scholar 

  5. Black, M.J., Anandan, P.: The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Comput. Vis. Image Underst. 63, 75–104 (1996)

    Article  Google Scholar 

  6. Bruckstein, A.M.: On globally optimal local modeling: from moving least squares to over-parametrization. In: Workshop on Sparse Representation of Multiscale Data and Images: Theory and Applications. Institute of Advanced Study, Nanyang, Technological University, Singapore (2009)

    Google Scholar 

  7. Chan, T.F., Shen, J.: On the role of the bv image model in image restoration. AMS Contemp. Math. 330, 25–41 (2003). accepted (by two referees)

    Google Scholar 

  8. Cohen, E., Riesenfeld, R.F., Elber, G.: Geometric Modeling with Splines: an Introduction. AK Peters, Natick (2001)

    MATH  Google Scholar 

  9. Darrell, T.J., Pentland, A.P.: Cooperative robust estimation using layers of support. IEEE Trans. Pattern Anal. Mach. Intell. 17, 474–487 (1991)

    Article  Google Scholar 

  10. Farnebäck, G.: Spatial domain methods for orientation and velocity estimation. Lic. Thesis LiU-Tek-Lic-1999:13, Dept. EE, Linköping University, SE-581 83 Linköping, (1999). Thesis No. 755, ISBN 91-7219-441-3

    Google Scholar 

  11. Fleishman, S., Cohen-Or, D., Silva, C.T.: Robust moving least-squares fitting with sharp features. ACM Trans. Graph. 24, 544–552 (2005)

    Article  Google Scholar 

  12. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Haindl, M., Mikes, S.: Model-based texture segmentation. In: Proceedings of the International Conference on Image Analysis and Recognition, pp. 306–313. Springer, Berlin (2004)

    Google Scholar 

  14. Haralick, R.M., Watson, L.: A facet model for image data. Comput. Graph. Image Process. 15(2), 113–129 (1981)

    Article  Google Scholar 

  15. Harten, A., Osher, S.: Uniformly high-order accurate nonoscillatory schemes. SIAM J. Numer. Anal. 24, 279–309 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kindermann, S., Osher, S., Jones, P.W.: Deblurring and denoising of images by nonlocal functionals. Multiscale Model. Simul. 4(4), 1091–1115 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Levin, D.: The approximation power of moving least-squares. Math. Comput. 67, 1517–1531 (1998)

    Article  MATH  Google Scholar 

  18. Levin, D.: Mesh-independent surface interpolation. In: Brunnett, G. et al. (eds.) Geometric Modeling for Scientific Visualization, pp. 37–49. Springer, Berlin/London (2003)

    Google Scholar 

  19. Malisiewicz, T., Efros, A.A.: Improving spatial support for objects via multiple segmentations. In: Proceedings of the British Machine Vision Conference (BMVC), Warwich (2007)

    Google Scholar 

  20. Memin, E., Perez, P.: A multigrid approach for hierarchical motion estimation. In: Proceedings of the Sixth International Conference on Computer Vision, 1998, Bombay, pp. 933–938 (1998)

    Google Scholar 

  21. Nir, T., Bruckstein, A.M.: On over-parameterized model based TV-denoising. In: International Symposium on Signals, Circuits and Systems (ISSCS 2007), Iasi (2007)

    Google Scholar 

  22. Nir, T., Bruckstein, A.M., Kimmel, R.: Over-parameterized variational optical flow. Int. J. Comput. Vis. 76(2), 205–216 (2008)

    Article  Google Scholar 

  23. Olshausen, B.A., Fieldt, D.J.: Sparse coding with an overcomplete basis set: a strategy employed by v1. Vis. Res. 37, 3311–3325 (1997)

    Article  Google Scholar 

  24. Pock, T.: Fast total variation for computer vision. Ph.D. thesis, Graz University of Technology (2008)

    Google Scholar 

  25. Quatieri, T.: Discrete-Time Speech Signal Processing: Principles and Practice, 1st edn. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

  26. Rosman, G., Shem-Tov, S., Bitton, D., Nir, T., Adiv, G., Kimmel, R., Feuer, A., Bruckstein, A.M.: Over-parameterized optical flow using a stereoscopic constraint. In: Proceedings of the Scale Space and Variational Methods in Computer Vision. Springer, Berlin/London (2011)

    Google Scholar 

  27. Rubinstein, R., Zibulevsky, M., Elad, M.: Efficient implementation of the k-svd algorithm using batch orthogonal matching pursuit. Technical report, Technion – Israel Institute of Technology (2008)

    Google Scholar 

  28. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  29. Savage, J., Chen, K.: On multigrids for solving a class of improved total variation based staircasing reduction models. In: Tai, X.-C., Lie, K.-A., Chan, T.F., Osher, S. (eds.) Proceedings of the International Conference on PDE-Based Image Processing and Related Inverse Problems, CMA, Oslo, 8–12 Aug 2005. Mathematics and Visualization, Image Processing Based on Partial Differential Equations, pp. 69–94 (2006)

    Google Scholar 

  30. Shah, J.: A common framework for curve evolution, segmentation and anisotropic diffusion. In: Proceedings of the 1996 Conference on Computer Vision and Pattern Recognition (CVPR ’96), p. 136. IEEE Computer Society, Washington, DC (1996)

    Google Scholar 

  31. Shah, J.: Curve evolution and segmentation functionals: application to color images. In: Proceedings of the IEEE ICIP’96, Lausanne, pp. 461–464 (1996)

    Google Scholar 

  32. Shu, C.W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Cockburn, B., Shu, C.-W., Johnson, C., Tadmor, E. (eds.) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, vol. 1697, pp. 325–432. Springer (1997)

    Google Scholar 

  33. Sun, D., Sudderth, E., Black, M.: Layered image motion with explicit occlusions, temporal consistency, and depth ordering. In: Lafferty, J., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Proceedings of the Advances in Neural Information Processing Systems, Vancouver, vol. 23, pp. 2226–2234 (2010)

    Google Scholar 

  34. Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation. Society for Industrial and Applied Mathematics, Philadelphia (2004)

    Google Scholar 

  35. Trobin, W., Pock, T., Cremers, D., Bischof, H.: An unbiased second-order prior for high-accuracy motion estimation. In: Proceedings of the DAGM Symposium, pp. 396–405. Springer, Berlin/New York (2008)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Israel Science foundation (ISF) grant no. 1551/09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shachar Shem-Tov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shem-Tov, S., Rosman, G., Adiv, G., Kimmel, R., Bruckstein, A.M. (2013). On Globally Optimal Local Modeling: From Moving Least Squares to Over-parametrization. In: Breuß, M., Bruckstein, A., Maragos, P. (eds) Innovations for Shape Analysis. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34141-0_17

Download citation

Publish with us

Policies and ethics