Skip to main content

Part of the book series: Understanding Complex Systems ((UCS))

  • 1701 Accesses

Abstract

A review is made of the calculation (and comparison with experiments) of the damping of surface waves, with special emphasis in some recent results and their quantitative and qualitative consequences on the surface waves dynamics. A method is proposed to experimentally measure the main surfactant properties associated with surface wave damping using the liquid bridge configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stokes, G.G.: On the effect of internal friction of fluids on the motion of pendulums. Trans. Camb. Philo. Soc. 9, 8–106 (1851)

    ADS  Google Scholar 

  2. Stokes, G.G.: On the theories of the internal friction of fluids in motion. Trans. Camb. Philos. Soc. 8, 287–305 (1845)

    Google Scholar 

  3. Miles, J.W.: Surface-wave damping in closcd basins. Proc. R. Soc. Lond. A 297, 459–75 (1967)

    Article  ADS  Google Scholar 

  4. Graham-Eagle, J.: A new method for calculating eigenvalues with applications to gravity-capillary waves with edge constraints. Math. Proc. Camb. Philos. Soc. 94, 553–564 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Sanz, A.: The influence of the outer bath in the dynamics of axisymmetric liquid bridges. J. Fluid Mech. 156, 241–267 (1985)

    Article  Google Scholar 

  6. Bejamin, T.B., Scott, J.C.: Gravity-capillary waves with edge constraints. J. Fluid Mech. 92, 241–267 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  7. Bejamin, T.B., Ursell, F.: The stability of the plane free surface of a liquid in vertical periodic motion. Proc. R. Soc. Lond. A 225, 505–515 (1954)

    Article  ADS  Google Scholar 

  8. Case, K.M., Parkinson, W.C.: Damping of surface waves in an incompressible liquid. J. Fluid Mech. 2, 172–184 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Keulegan, G.H.: Energy dissipation in standing waves in rectangular basins. J. Fluid Mech. 6, 33–50 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Mei, C.C., Liu, L.F.: The damping of surface gravity waves in a bounded liquid. J. Fluid Mech. 59, 239–256 (1973)

    Article  ADS  MATH  Google Scholar 

  11. Moffatt, H.K.: Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18, 1–18 (1964)

    Article  ADS  MATH  Google Scholar 

  12. Huh, C., Scriven, L.E.: Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 36, 85–101 (1971)

    Article  Google Scholar 

  13. Dussan, V.E.B., Davis, S.H.: On the motion of a fluid-fluid interface along a solid surface. J. Fluid Mech. 65, 71–95 (1974)

    Article  ADS  MATH  Google Scholar 

  14. Dussan, V.E.B.: The moving contact line: the slip boundary condition. J. Fluid Mech. 77, 665–684 (1976)

    Article  ADS  MATH  Google Scholar 

  15. Dussan, V.E.B.: On the spreading of liquids on solid surfaces: static and dynamic contact lines. Ann. Rev. Fluid Mech. 11, 371–400 (1979)

    Article  ADS  Google Scholar 

  16. Shikhmurzaev, Y.D.: The moving contact line on a smooth solid surface. Int. J. Multiphase Flow 19, 589–610 (1993)

    Article  MATH  Google Scholar 

  17. Hocking, L.M.: The damping of capillary-gravity waves at a rigid boundary. J. Fluid Mech. 179, 253–266 (1987)

    Article  ADS  MATH  Google Scholar 

  18. Hocking, L.M.: Waves produced by a vertically oscillating plate. J. Fluid Mech. 179, 267–281 (1987)

    Article  ADS  MATH  Google Scholar 

  19. Marangoni, C.G.M.: Sull expansione dell goccie di un liquido galleggianti sulla superficie di altro liquido. Tipografia dei fratelli Fusi, Pavia (1865)

    Google Scholar 

  20. Thomson, J.: On certain curious motions observable at the surfaces of wine and other alcoholic liquors. Philos. Mag. 10, 330–333 (1855)

    Google Scholar 

  21. Scriven, L.E., Sternling, C.V.: The Marangoni effects. Nature 187, 186–188 (1960)

    Article  Google Scholar 

  22. Ross, S., Becher, P.: The history of the spreading coefficient. J. Colloid Interface Sci. 149, 575–579 (1992)

    Article  Google Scholar 

  23. Plateau, J.A.F.: Experimental and theoretical researches into the figures of equilibrium of a liquid mass without weight. Philos. Mag. 38, 445–455 (1869)

    Google Scholar 

  24. Boussinesq, J.: Existence of a superficial viscosity in the thin transition layer separating one liquid from another contiguous fluid. C. R. Hehbd. Seances Acad. Sci. 156, 983–989 (1913)

    MATH  Google Scholar 

  25. Scriven, L.E.: Dynamics of a fluid interface. Chem. Eng. Sci. 12, 98–108 (1960)

    Article  Google Scholar 

  26. Dorrestein, R.: General linearized theory of the effect of surface films on water ripples, I and II. Proc. K. Ned. Akad. Wet. B 54, 260–272, 350–356 (1951)

    MathSciNet  MATH  Google Scholar 

  27. Goodrich, F.C.: The mathematical theory of capillarity, I-III. Proc. R. Soc. Lond. A 260, 481–509 (1961)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Levich, V.G.: Physicochemical Hydrodynamics. Prentice-Hall, Englewood Cliffs (1962)

    Google Scholar 

  29. Henderson, D.M., Miles, J.W.: Surface wave damping in a circular cylinder with a fixed contact line. J. Fluid Mech. 275, 285–299 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Higuera, M., Nicolas, J.A., Vega, J.M.: Linear oscillations of weakly dissipative axisymmetric liquid bridges. Phys. Fluids A 6, 438–450 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Martel, C., Knobloch, E.: Damping of nearly inviscid water waves. Phys. Rev. E 56, 5544–5548 (1997)

    Article  ADS  Google Scholar 

  32. Martel, C., Nicolas, J.A., Vega, J.M.: Surface-wave damping in a brimful circular cylinder. J. Fluid Mech. 360, 213–228 (1998) [see also Corrigendum, J. Fluid Mech. 373, 379]

    Google Scholar 

  33. Miles, J.W., Henderson, D.M.: A note on interior vs. bundary layer damping on surface waves in a circular cylinder. J. Fluid Mech. 364, 319–323 (1998)

    Google Scholar 

  34. Howell, D., Buhrow, B., Heath, T., McKenna, C., Hwang, W., Schatz, M.F.: Measurements of surface-wave damping in a container. Phys. Fluids 12, 322–326 (2000)

    Article  ADS  MATH  Google Scholar 

  35. Nicolas, J.A., Vega, J.M.: A note on the effect of surface contamination in water wave damping. J. Fluid Mech. 410, 367–373 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Van Dorn, W.G.: Boundary conditions of oscillatory waves. J. Fluid Mech. 24, 769–779 (1966)

    Article  ADS  Google Scholar 

  37. Zitova, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput. 21, 977–1000 (2003)

    Article  Google Scholar 

  38. Song, B., Springer, J.: Determination of interfacial tension from the profile of a pendant drop using computer-aided image processing. 2. Experimental. J. Colloid Interface Sci. 184, 77–91 (1996)

    Google Scholar 

  39. Vega, E.J., Montanero, J.M., Ferrera, C.: Exploring the precision of backlight optical imaging in microfluidics close to the diffraction limit. Measurement 44, 1300–1311 (2011)

    Article  Google Scholar 

  40. Mollot, D.J., Tsamopoulos, J., Chen, T.Y., Ashgriz, N.: Nonlinear dynamics of capillary bridges: experiments. J. Fluid Mech. 255, 411–435 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  41. Thiessen, D.B., Marr-Lyon, M.J., Marston, P.L.: Active electrostatic stabilization of liquid bridges in low gravity. J. Fluid Mech. 457, 285–294 (2002)

    Article  ADS  MATH  Google Scholar 

  42. Vega, E.J., Montanero, J.M.: Damping of linear oscillations in axisymmetric liquid bridges. Phys. Fluids 21, 092101 (2009)

    Article  ADS  Google Scholar 

  43. Herrada, M.A., López-Herrera, J.M., Vega, E.J., Montanero, J.M.: Numerical simulation of a liquid bridge in a coaxial gas flow. Phys. Fluids 23, 012101 (2011)

    Article  ADS  Google Scholar 

  44. Hirsa, A.H., Lopez, J.M., Miraghaie, R.: Measurement and computation of hydrodynamic coupling at an air/water interface with an insoluble monolayer. J. Fluid Mech. 443, 271–292 (2001)

    Article  ADS  MATH  Google Scholar 

  45. Hirsa, A.H., Lopez, J.M., Miraghaie, R.: Determination surface shear viscosity via deep channel flow with inertia. J. Fluid Mech. 470, 135–149 (2003)

    ADS  Google Scholar 

  46. Herrada, M.A., Montanero, J.M., Vega, J.M.: The effect of surface shear viscosity on the damping of oscillations in millimetric liquid bridges. Phys. Fluids 23, 082102 (2011)

    Article  ADS  Google Scholar 

  47. Kirby, B.J.: Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  48. Anna, S.L.: Interfaces and Multiphase Flows in Microfluidics. IMA Tutorial. Institute for Mathematics and its Applications, Minneapolis (2009)

    Google Scholar 

  49. Lord Rayleigh, J.W.S.: The circulation of air observed in Kunt’s tubes, and on some allied acoustical problems. Philos. Trans. R. Soc. Lond. 175, 1–21 (1883)

    Google Scholar 

  50. Faraday, M.: On the forms and states assumed by fluids in contact with vibrating elastic surfaces. Philos. Trans. R. Soc. Lond. 121, 319–340 (1831)

    Google Scholar 

  51. Schlichting, H.: Berechnung ebener periodischer Grenzschichtströmungen. Phys. Z. 33, 327–335 (1932)

    Google Scholar 

  52. Longuet-Higgins, M.S.: Mass transport in water waves. Philos. Trans. R. Soc. A 245, 535–581 (1953)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. Lighthill, J.: Acoustic streaming in the ear itself. J. Fluid Mech. 239, 551–606 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. Leibovich, S.: On wave-current interaction theories of Langmuir circulations. Ann. Rev. Fluid Mech. 15, 391–427 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  55. Nicolas, J.A., Rivas, D., Vega, J.M.: On the steady streaming flow due to high-frequency vibration in nearly-inviscid liquid bridges. J. Fluid Mech. 354, 147–174 (1998)

    Article  ADS  MATH  Google Scholar 

  56. Miles, J.W., Henderson, D.M.: Parametrically forced surface waves. Ann. Rev. Fluid Mech. 22, 143–165 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  57. Nicolas, J.A., Vega, J.M.: Weakly nonlinear oscillations of axisymmetric liquid bridges. J. Fluid Mech. 328, 95–128 (1996)

    Article  ADS  MATH  Google Scholar 

  58. Vega, J.M., Knobloch, E., Martel, C.: Nearly inviscid Faraday waves in annular containers of moderately large aspect ratio. Physica D 154, 313–336 (2001)

    Article  ADS  MATH  Google Scholar 

  59. Higuera, M., Vega, J.M., Knobloch, E.: Coupled amplitude-streaming flow equations for nearly inviscid Faraday waves in small aspect ratio containers. J. Nonlinear Sci. 12, 505–551 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. Varas, F., Vega, J.M.: Modulated surface waves in large aspect ratio, horizontally vibrated containers. J. Fluid Mech. 569, 271–304 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  61. Martin, E., Vega, J.M.: The effect of surface contamination on the drift instability of standing Faraday waves. J. Fluid Mech. 546, 203–225 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. Douady, S., Fauve, S., Thual, O.: Oscillatory phase modulation of parametrically forced surface waves. Europhys. Lett. 10, 309–315 (1989)

    Article  ADS  Google Scholar 

  63. Martin, E., Martel, C., Vega, J.M.: Drift instability of standing Faraday waves. J. Fluid Mech. 467, 57–79 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgement

This research was partially supported by the Spanish Ministry of Education, under Grants TRA2010-18054 and DPI2010-21103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Vega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Herrada, M.A., Montanero, J.M., Vega, J.M. (2013). Surface Wave Damping. In: Rubio, R., et al. Without Bounds: A Scientific Canvas of Nonlinearity and Complex Dynamics. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34070-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34070-3_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34069-7

  • Online ISBN: 978-3-642-34070-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics