Skip to main content

Tracheae in Spiders: Respiratory Organs for Special Functions

  • Chapter
  • First Online:
Spider Ecophysiology

Abstract

That spiders possess tracheae besides lungs is often not known even among biologists. Tracheae give the spiders the chance to breathe and act more flexible to their environmental constraints as they can do it with lungs alone. In this chapter the tracheal system in spiders is described morphologically and potential reasons to develop such a respiratory system, most often in combination with lungs, are given. Moreover, some examples are described in more detail to give the reader the opportunity to have a close insight into this field. Finally, the most probable function of the tracheae, serving in local oxygen demand, is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson JF (1970) Metabolic rates in spiders. Comp Biochem Physiol 33:51–72

    Article  PubMed  CAS  Google Scholar 

  • Anderson JF (1974) Responses to starvation in the spiders Lycosa lenta (Hentz) und Filistata hibernalis (Hentz). Ecology 55:576–585

    Article  Google Scholar 

  • Anderson JF (1994) Comparative energetics of comb-footed spiders (Araneae: Theridiidae). Comp Biochem Physiol A 109:181–189

    Article  Google Scholar 

  • Anderson JF (1996) Metabolic rates of resting salticid and thomisid spiders. J Arachnol 24:129–134

    Google Scholar 

  • Anderson JF, Prestwich KN (1975) The fluid pressure pumps of spiders (Chelicerata, Araneae). Z Morph Tiere 81:257–277

    Article  Google Scholar 

  • Anderson JF, Prestwich KN (1980) Scaling of subunit structures in book lungs of spiders (Araneae). J Morphol 165:167–174

    Article  Google Scholar 

  • Anderson JF, Prestwich KN (1982) Respiratory gas exchange in spiders. Physiol Zool 55:72–90

    Google Scholar 

  • Angersbach D (1978) Oxygen transport in the blood of the tarantula Eurypelma californicum: pO2 and pH during rest, activity and recovery. J Comp Physiol 123:113–125

    Google Scholar 

  • Blest AD (1976) The tracheal arrangement and the classification of linyphiid spiders. J Zool (Lond) 180:185–194

    Article  Google Scholar 

  • Braun F (1931) Beiträge zur Biologie und Atmungsphysiologie der Argyroneta aquatica Cl. Zool Jb Syst 62:175–262

    Google Scholar 

  • Bromhall C (1987a) Spider heart-rates and locomotion. J Comp Physiol B 157:451–460

    Article  Google Scholar 

  • Bromhall C (1987b) Spider tracheal systems. Tissue Cell 19:793–807

    Article  PubMed  CAS  Google Scholar 

  • Burmester T (2013) Evolution and adaptation of hemocyanin within spiders. In: Nentwig W (ed) Spider ecophysiology. Springer, Heidelberg (this volume)

    Google Scholar 

  • Carrel JE (1987) Heart rate and physiological ecology. In: Nentwig W (ed) Ecophysiology of spiders. Springer, Berlin

    Google Scholar 

  • Carrel JE, Heathcote RD (1976) Heart rate in spiders: influence of body size and foraging strategies. Science 193:148–150

    Article  PubMed  CAS  Google Scholar 

  • Culik BM, McQueen DJ (1985) Monitoring respiration and activity in the spider Geolycosa domifex (Hancock) using time-lapse televison and CO2-analysis. Can J Zool 63:843–846

    Article  Google Scholar 

  • Dunlop JA, Anderson LI, Kerp H, Hass H (2003) Preserved organs of Devonian harvestmen. Nature 425:916

    Article  PubMed  CAS  Google Scholar 

  • Ellis CH (1944) The mechanism of extension in the legs of spiders. Biol Bull 86:41–50

    Article  Google Scholar 

  • Forster RR (1980) Evolution of the tarsal organ, the respiratory system and the female genitalia in spiders. In: Gruber J (ed) International Congress of Arachnology, vol 8, Vienna, pp 269–284

    Google Scholar 

  • Greenstone MH, Bennett AF (1980) Foraging strategy and metabolic rates in spiders. Ecology 61:1255–1259

    Article  Google Scholar 

  • Hemmingsen AM (1960) Energy metabolism as related to body size and respiratory surfaces, and its evolution. Rep Steno Mem Hosp 9:1–110

    Google Scholar 

  • Kästner A (1929) Bau und Funktion der Fächertracheen einiger Spinnen. Z Morphol Tiere 13:463–558

    Article  Google Scholar 

  • Kropf C (2013) Hydraulic system of locomotion. In: Nentwig W (ed) Spider ecophysiology. Springer, Heidelberg (this volume)

    Google Scholar 

  • Lamy E (1902) Les trachées des araignées. Ann Sci Natur Zool 15:149–280

    Google Scholar 

  • Levi HW (1967) Adaptations of respiratory systems of spiders. Evolution 21:571–583

    Article  Google Scholar 

  • Levi HW (1976) On the evolution of tracheae in Arachnids. Bull Br Arachnol Soc 3:187–188

    Google Scholar 

  • Linzen B, Gallowitz P (1975) Enzyme activity patterns in muscles of the lycosid spider, Cupiennius salei. J Comp Physiol 96:101–109

    CAS  Google Scholar 

  • McQueen DJ (1980) Active respiration rates for the burrowing wolf spider Geolycosa domifex (Hancock). Can J Zool 58:1066–1074

    Article  PubMed  CAS  Google Scholar 

  • Millidge AF (1986) A revision of the tracheal structures of the Linyphiidae (Araneae). Bull Br Arachnol Soc 7:57–61

    Google Scholar 

  • Millot J (1949) Ordre des Aranéides (Araneae), systeme respiratoire. In: Grassé P (ed) Traité de zoologie, vol VI., pp 637–646

    Google Scholar 

  • Moore SJ (1976) Some spider organs as seen by the scanning electron microscope, with special reference to the book-lung. Bull Br Arachnol Soc 3:177–187

    Google Scholar 

  • Opell BD (1979) Revision of the genera and tropical american species of the spider family Uloboridae. Bull Mus Comp Zool 148:443–549

    Google Scholar 

  • Opell BD (1987) The influence of web monitoring tactics on the tracheal systems of spiders in the family Uloboridae (Arachnida, Araneida). Zoomorphology 107:255–259

    Article  Google Scholar 

  • Opell BD (1989) Centers of mass and weight distribution in spiders of the family Uloboridae. J Morphol 202:351–359

    Article  Google Scholar 

  • Opell BD (1990) The relationships of book lung and tracheal systems in the spider family Uloboridae. J Morphol 206:211–216

    Article  Google Scholar 

  • Opell BD (1998) The respiratory complementary of spider book lung and tracheal systems. J Morphol 236:57–64

    Article  Google Scholar 

  • Opell BD, Konur DC (1992) Influence of web-monitoring tactics on the density of mitochondria in leg muscles of the spider family Uloboridae. J Morphol 213:341–347

    Article  Google Scholar 

  • Paul R, Bihlmayer S (1995) Circulatory physiology of a tarantula (Eurypelma californicum). Zool-Anal Complex Syst 98:69–81

    Google Scholar 

  • Paul R, Fincke T, Linzen B (1987) Respiration in the tarantula Eurypelma californicum: evidence for diffusion lungs. J Comp Physiol B 157:209–217

    Article  Google Scholar 

  • Paul R, Tiling K, Focke P, Linzen B (1989) Heart and circulatory functions in a spider (Eurypelma californicum): the effects of hydraulic force generation. J Comp Physiol B 158:673–687

    Article  Google Scholar 

  • Prestwich KN (1983a) Anaerobic metabolism in spiders. Physiol Zool 56:112–121

    CAS  Google Scholar 

  • Prestwich KN (1983b) The roles of aerobic and anaerobic metabolism in active spiders. Physiol Zool 56:122–132

    Google Scholar 

  • Prestwich KN (1988) The constraints on maximal activity in spiders. I. Evidence against the fluid insufficiency hypothesis. J Comp Physiol 158:437–447

    Google Scholar 

  • Purcell F (1895) Note on the development of the lungs, entapophyses, tracheae and genital ducts in spiders. Zool Anz 486:1–5

    Google Scholar 

  • Purcell WF (1909) Development and origin of the respiratory organs in Araneae. Q J Microsc Sci 54:1–110

    Google Scholar 

  • Purcell WF (1910) The phylogeny of tracheae in Araneae. Q J Microsc Sci 54:519–563

    Google Scholar 

  • Ramirez MJ (2000) Respiratory system morphology and the phylogeny of haplogyne spiders (Araneae, Araneomorphae). J Arachnol 28:149–157

    Article  Google Scholar 

  • Reisinger PWM, Focke P, Linzen B (1990) Lung morphology of the tarantula, Eurypelma californicum, Ausserer, 1871 (Araneae: Theraphosidae). Bull Br Arachnol Soc 8:165–170

    Google Scholar 

  • Reisinger PWM, Tutter I, Welsch U (1991) Fine structure of the gills of the horseshoe crabs Limulus polyphemus and tachypleus tridentatus and of the book lungs of the spider Eurypelma californicum. Zool Jb Anat 121:331–357

    Google Scholar 

  • Schmitz A (2004) Metabolic rates during rest and activity in differently tracheated spiders (Arachnida, Araneae): Pardosa lugubris (Lycosidae) and Marpissa muscosa (Salticidae). J Comp Physiol B 174:519–526

    PubMed  CAS  Google Scholar 

  • Schmitz A (2005) Spiders on a treadmill: influence of running activity on metabolic rates in Pardosa lugubris (Araneae, Lycosidae) and Marpissa muscosa (Araneae, Salticidae). J Exp Biol 208:1401–1411

    Article  PubMed  Google Scholar 

  • Schmitz A, Perry SF (2000) Respiratory system of arachnids I: Morphology of the respiratory system of Salticus scenicus and Euophrys lanigera (Arachnida, Araneae, Salticidae). Arthr Struct Develop 29:3–12

    Article  CAS  Google Scholar 

  • Schmitz A, Perry SF (2001) Bimodal breathing in jumping spiders: morphometric partitioning of lungs and tracheae in Salticus scenicus (Arachnida, Araneae, Salticidae). J Exp Biol 204:4321–4334

    PubMed  CAS  Google Scholar 

  • Schmitz A, Perry SF (2002) Respiratory organs in wolf spiders: morphometric analysis of lungs and tracheae in Pardosa lugubris (L.) (Arachnida, Araneae, Lycosidae). Arthr Struct Dev 31:217–230

    Article  Google Scholar 

  • Scholtz G, Kamenz C (2006) The book lungs of Scorpiones and Tetrapulmonata (Chelicerata, Arachnida): evidence for homology and a single terrestrialisation event of a common arachnid ancestor. Zoology 109:2–13

    Article  PubMed  Google Scholar 

  • Selden PA (1996) Fossil mesothele spiders. Science 379:498–499

    CAS  Google Scholar 

  • Strazny F, Perry SF (1984) Morphometric diffusing capacity and functional anatomy of the book lungs in the spider Tegenaria spp. (Agelenidae). J Morphol 182:339–354

    Article  Google Scholar 

  • Weygoldt P (1998) Evolution and systematics of the Chelicerata. Exp Appl Acarol 22:63–79

    Article  Google Scholar 

  • Weygoldt P, Paulus HF (1979) Untersuchungen zur Morphologie, Taxonomie und Phylogenie der Chelicerata. II. Cladogramme und die Entfaltung der Chelicerata. Z Zool Syst Evol-Forsch 17:177–200

    Article  Google Scholar 

  • Wirkner C, Huckstorf K (2013) The circulatory system of spiders. In: Nentwig W (ed) Spider ecophysiology. Springer, Heidelberg (this volume)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anke Schmitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmitz, A. (2013). Tracheae in Spiders: Respiratory Organs for Special Functions. In: Nentwig, W. (eds) Spider Ecophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33989-9_3

Download citation

Publish with us

Policies and ethics