Skip to main content

Advanced Mueller Ellipsometry Instrumentation and Data Analysis

  • Chapter
  • First Online:
Ellipsometry at the Nanoscale

Abstract

The main object of this chapter is to give an overview the possibilities offered by instruments capable of measuring full Mueller matrices in the field of optical characterization. We have chosen to call these instruments Mueller ellipsometers in order to highlight their close relation with instruments traditionally used in ellipsometry. We want to make clear to the reader the place that Mueller ellipsometry takes with respect to standard ellipsometry by showing the similarities but also the differences among these techniques, both in instrumentation and data treatment. To do so the chapter starts by a review of the optical formalisms used in standard and Mueller ellipsometry respectively. In order to highlight the particularities and the advantages brought by Mueller ellipsometry, a special section is devoted to the algebraic properties of Mueller matrices and to the description of different ways to decompose them. Matrix decompositions are used to unveil the basic polarimetric properties of a the sample when a precise model is not available. Then follows a description of the most common optical configurations used to build standard ellipsometers. Special attention is paid to show what can and what cannot be measured with them. On the basis of this knowledge it is shown the interest of measuring whole Mueller matrices, in particular for samples characterized by complex anisotropy and/or depolarization. Among the numerous optical assemblies able to measure full Mueller matrices, most of them are laboratory prototypes, and only very few have been industrialized so far. Because an extensive and comparative review of all the Mueller ellipsometric instruments developed to date is clearly out of the scope of this chapter, we limit our description to four Mueller ellipsometers, two imaging and two spectroscopic systems that have been developed by us in the past years. The technical description of the Mueller ellipsometers is accompanied by some examples of applications which, without being exhaustive, are representative of the type of analyses performed in ellipsometry, and also illustrate the advantages that can be brought by modern Mueller ellipsometers to optical metrology, materials science and biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.M.A Azzam, N.M. Bashara, Ellipsometry and Polarized Light (Elsevier, Amsterdam, 1987)

    Google Scholar 

  2. H.G. Tompkins, W.A. McGahan, Spectroscopic Ellipsometry and Reflectometry A User’s Guide (Wiley, New York, 1999)

    Google Scholar 

  3. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, West Sussex, 2007)

    Book  Google Scholar 

  4. M. Born, E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  5. S. Huard, The Polarization of Light (Wiley, New York, 1997)

    Google Scholar 

  6. R.A. Chipman, Polarimetry, in: Handbook of Optics, vol 2, chap 22, 2nd ed. M. Bass ed. (McGraw Hill, New York, 1995)

    Google Scholar 

  7. D. Goldstein, Polarized Light, 2nd edn. (Decker, New York, 2003)

    Book  Google Scholar 

  8. J.J. Gil, Characteristic properties of Mueller matrices. J. Opt. Soc. Am. 17, 328–334 (2000). doi:10.1364/JOSAA.17.000328

    Article  Google Scholar 

  9. S.R. Cloude, Group theory and polarisation algebra. Optik 75, 26 (1986). doi:10.1364/JOSAA.18.003130

    Google Scholar 

  10. D.G.M. Anderson, R. Barakat, Necessary and sufficient conditions for a Mueller matrix to be derivable from a Jones matrix. J. Opt. Soc. Am. A 11, 2305 (1994). doi:10.1364/JOSAA.11.002305

    Article  MathSciNet  Google Scholar 

  11. J.J. Gil, E. Bernabeu, A depolarization criterion in Mueller matrices. Opt. Acta 32, 259 (1985). doi:10.1080/713821732

    Article  Google Scholar 

  12. S.Y. Lu, R.A. Chipman, Interpretation of Mueller matrices based on polar decomposition. J. Opt. Soc. Am. A 13, 1106–1113 (1996). doi:10.1364/JOSAA.13.001106

    Article  Google Scholar 

  13. R. Ossikovski, Alternative depolarization criteria for Mueller matrices. J. Opt. Soc. Am. A 27, 808–814 (2010). doi:10.1364/JOSAA.27.000808

    Article  MathSciNet  Google Scholar 

  14. R. Espinosa-Luna, G. Atondo-Rubio, E. Bernabeu, S. Hinijosa-Ruiz, Dealing depolarization of light in Mueller matrices with scalar metrics \(\hat{\rm A}\)’. Optik 121, 1058–1068 (2010). doi: 10.1016/j.ijleo.2008.12.030

    Article  Google Scholar 

  15. S.R. Cloude, E. Pottier, IEEE Trans. GRS 34, 498 (1996)

    Google Scholar 

  16. S.R. Cloude, Conditions for the physical realizability of matrix operators in polarimetry. Proc. SPIE 1166, 177–185 (1989)

    Article  Google Scholar 

  17. F. Le Roy-Bréhonnet, B. Le Jeune, Utilization of Mueller matrix formalism to obtain optical targets depolarization and polarization properties. Prog. Quantum Electron. 21, 109–151 (1997). doi:10.1016/S0079-6727(97)84687-3

    Article  Google Scholar 

  18. J. Morio, F. Goudail, Influence of the order of diattenuator, retarder, and polarizer in polar decomposition of Mueller matrices. Optics. Lett. 29, 2234–2236 (2004). doi:10.1364/OL.29.002234

    Article  Google Scholar 

  19. R. Ossikovski, A. De Martino, S. Guyot, Forward and reverse product decompositions of depolarizing Mueller matrices. Opt. Lett. 32, 689 (2007)

    Google Scholar 

  20. R. Ossikovski, Interpretation of nondepolarizing Mueller matrices based on singular-value decomposition. J. Opt. Soc. Am. A 25, 473–482 (2008). doi:JOSAA.25.000473

    Article  MathSciNet  Google Scholar 

  21. R. Ossikovski, E. Garcia-Caurel, A. De Martino, Product decompositions of experimentally determined non-depolarizing Mueller matrices. Physica status solidi C (2008). doi:10.1002/pssc.200777794

  22. R. Ossikovski, Analysis of depolarizing Mueller matrices through a symmetric decomposition. J. Opt. Soc. Am. A 26, 1109–1118 (2009)

    Article  MathSciNet  Google Scholar 

  23. C. Fallet, A. Pierangelo, R. Ossikovski, A. De Martino, Experimental validation of the symmetric decomposition of Mueller matrices. Opt. Express. 18, 2832 (2009). doi:10.1364/OE.18.000831

    Google Scholar 

  24. R. Ossikovski, C. Fallet, A. Pierangelo, A. De Martino, Experimental implementation and properties of Stokes nondiagonalizable depolarizing Mueller matrices. Opt. Lett. 34, 974 (2009)

    Google Scholar 

  25. R. Ossikovski, M. Foldyna, C. Fallet, A. De Martino, Experimental evidence for naturally occurring nondiagonal depolarizers. Opt. Lett. 34, 2426–2428 (2009). doi:10.1364/OL.34.002426

    Article  Google Scholar 

  26. R. Ossikovski, Differential matrix formalism for depolarizing anisotropic media. Opt. Lett. 36, 2330–2332 (2011). doi:10.1364/OL.36.002330

    Article  Google Scholar 

  27. R.M.A. Azzam, Propagation of partially polarized light through anisotropic media with or without depolarization: a differential \(4\times 4\) matrix calculus. J. Opt. Soc. Am. 68, 1756–1767 (1978). doi: 10.1364/JOSA.68.001756

    Article  Google Scholar 

  28. M. Anastasiadou, S. Ben-Hatit, R. Ossikovski, S. Guyot, A. De Martino, Experimental validation of the reverse polar decomposition of depolarizing Mueller matrices. J. Eur. Opt. Soc. Rapid Publ. 2, 1–7 (2007). doi:10.2971/jeos.2007.07018

    Article  Google Scholar 

  29. M. Gaillet, D. Cattelan, G. Bruno, M. Losurdo, Roadmap on industrial needs in ellipsometry and specifications for the next generation of ellipsometry and polarimetry. NanocharM Report 2009, www.nanocharm.org

  30. G.E. Jellison Jr., Data analysis for spectroscopic ellipsometry. Thin Solid Films 234, 416–422 (1993). doi:10.1016/0040-6090(93)90298-4

  31. G.E. Jellison Jr., The calculation of thin film parameters from spectroscopic ellipsometry data. Thin Solid Films 290–291, 40–45 (1996). doi:0.1016/S0040-6090(96)09009-8

  32. P.S. Hauge, Recent developments in instrumentation in ellipsometry. Surf. Sci. 96, 108–140 (1980). doi:10.1016/0039-6028(80)90297-6

    Article  Google Scholar 

  33. D. Thomson, B. Johs, Infrared ellipsometer/polarimeter system, method of calibration and use thereof, US patent No: US5706212, (1998)

    Google Scholar 

  34. A. Laskarakis, S. Logothetidis, E. Pavlopoulou, M. Gioti, Mueller matrix spectroscopic ellipsometry: formulation and application. Thin Solid Films 455–456, 43–49 (2004). doi:10.1016/j.tsf2003.11.197

    Article  Google Scholar 

  35. E. Compain, S. Poirier, B. Drévillon, General and self-consistent method for the calibration of polarization modulators, polarimeters, and Mueller-matrix ellipsometers. Appl. Opt. 38, 3490–3502 (1999). doi:10.1364/AO.38.003490

  36. D.S. Sabatke, A.M. Locke, M.R. Descour, W.C. Sweatt, Figures of merit for complete Stokes polarimeters. Proc. SPIE 4133, 75–81 (2000). doi:10.1117/12.406613

    Article  Google Scholar 

  37. J.S. Tyo, Noise equalization in Stokes parameter images obtained by use of variable-retardance polarimeters. Opt. Lett. 25, 1198–2000 (2000). doi:10.1364/OL.25.001198

    Article  Google Scholar 

  38. J.S. Tyo, Design of optimal polarimeters : maximization of signal-to-noise ratio and minimization of systematic error. Appl. Opt. 41, 619–630 (2002). doi:10.1364/AO.41.000619

    Article  Google Scholar 

  39. D.S. Sabatke, M.R. Descour, E.L. Dereniak, W.C. Sweatt, S.A. Kemme, G.S. Phipps, Optimization of retardance for a complete Stokes polarimeter. Opt. Lett. 25, 802 (2000). doi:10.1364/OL.25.000802

    Article  Google Scholar 

  40. J. Zallat, S. Aïnouz, M.P. Stoll, Optimal configurations for imaging polarimeters: impact of image noise and systematic errors. J. Opt. A Pure Appl. Opt. 8, 807 (2006). doi:10.1088/1464-4258/8/9/015

  41. M.H. Smith, Optimisation of a dual-rotating-retarder Mueller matrix polarimeter. Appl. Opt. 41, 2488 (2002). doi:10.1364/AO.41.002488

    Article  Google Scholar 

  42. R.W. Collins, J. Koh, Dual rotating-compensator multichannel ellipsometer: instrument design for real-time Mueller matrix spectroscopy of surfaces and films. JOSA A. 16, 1997–2006 (1999). doi:10.1364/JOSAA.16.001997

    Article  Google Scholar 

  43. E. Compain, B. Drévillon, High-frequency modulation of the four states of polarization of light with a single phase modulator. Rev. Sci. Instrum. 69, 1574 (1998). doi:/10.1063/1.1148811

    Article  Google Scholar 

  44. E. Compain, B. Drévillon, Broadband division-of-amplitude polarimeter based on uncoated prisms. Appl. Opt. 37, 5938 (1998). doi:10.1364/AO.37.005938

    Article  Google Scholar 

  45. E. Compain, B. Drévillon, J. Huc, J.Y. Parey, J.E. Bouree, Complete Mueller matrix measurement with a single high frequency modulation. Thin Solid Films 313–314, 47–52 (1998). doi:10.1016/S0040-6090(97)00767-0

  46. D. Lara, C. Dainty, Double-pass axially resolved confocal Mueller matrix imaging polarimetry. Opt. Lett. 30, 2879–2881 (2005). doi:10.1364/OL.30.002879

    Article  Google Scholar 

  47. See for instance the official website of Woollam Co. www.jawoollam.com

  48. G.E. Jellison, F.A. Modine, Two-modulator generalized ellipsometry: experiment and callibration. Appl. Opt. 36, 8184–8189 (1997). doi:10.1364/AO.36.008184

    Article  Google Scholar 

  49. O. Arteaga, J. Freudenthal, B. Wang, B. Kahr, Mueller matrix polarimetry with four photoelastic modulators: theory and calibration, to be published in, Applied Optics (2012)

    Google Scholar 

  50. A.E. Oxley, On apparatus for the production of circularly polarized light. Philos. Mag. 21, 517–532 (1911). doi:10.1080/14786440408637058

    MATH  Google Scholar 

  51. See for instance the official website of Meadowlark Optics, www.meadowlark.com

  52. J. Ladstein, F. Stabo-Eeg, E. Garcia-Caurel, M. Kildemo, Fast near-infra-red spectroscopic Mueller matrix ellipsometer based on ferroelectric liquid crystal retarders. Physica Status Solidi C, Special Issue: 4th International Conference on Spectroscopic Ellipsometry, 5, n/a, doi:10.1002/pssc.200890005

  53. P.A. Letnes, I.S. Nerbo, L.M.S. Ass, P.G. Ellingsen, M. Kildemo, Fast and optimal broad-band Stokes/Mueller polarimeter design by the use of a genetic algorithm. Opt. Express 18, 23095–23103 (2010). doi:10.1364/OE.18.023095

    Google Scholar 

  54. D. Cattelan, E. Garcia-Caurel, A. De Martino, B. Drevillon, Device and method for taking spectroscopic polarimetric measurements in the visible and near-infrared ranges. Patent application 2937732, Publication number: US 2011/0205539 A1

    Google Scholar 

  55. T. Wagner, J.N. Hilfiker, T.E. Tiwald, C.L. Bungay, S. Zollner, Materials characterization in the vacuum ultraviolet with variable angle spectroscopic ellipsometry. Physica Status Solidi A 188, 1553–1562 (2001). doi:10.1002/1521-396X(200112)188:4<1553:AID-PSSA1553>3.0.CO;2-A

    Article  Google Scholar 

  56. A. Zuber, N. Kaiser, J.L. Stehlé, Variable-angle spectroscopic ellipsometry for deep UV characterization of dielectric coatings. Thin Solid Films 261, 37–43 (1995). doi:10.1016/S0040-6090(94)06492-X

    Article  Google Scholar 

  57. E. Garcia-Caurel, J.L. Moncel, F. Bos, B. Drévillon, Ultraviolet phase-modulated ellipsometer. Revi. Sci. Instrum. 73, 4307–4312 (2002). doi:10.1063/1.1518788

    Article  Google Scholar 

  58. D.H. Goldstein, Mueller matrix dual-rotating retarder polarimeter. Appl. Opt. 31, 6676–6683 (1992). doi:10.1364/AO.31.006676

    Article  Google Scholar 

  59. L.L. Deibler, M.H. Smith, Measurement of the complex refractive index of isotropic materials with Mueller matrix polarimetry. Appl. Opt. 40, 3659–3667 (2001). doi:10.1364/AO.40.003659

    Article  Google Scholar 

  60. A. Röseler, Infrared Spectroscopic Ellipsometry (Akademie-Verlag, Berlin, 1990)

    Google Scholar 

  61. E.H. Korte, A. Röseler, Infrared spectroscopic ellipsometry: a tool for characterizing nanometer layers. Analyst 123, 647–651 (1998)

    Article  Google Scholar 

  62. J.N. Hilfiker, C.L. Bungay, R.A. Synowicki, T.E. Tiwald, C.M. Herzinger, B. Johs, G.K. Pribil, J.A. Woollam, Progress in spectroscopic ellipsometry: applications from vacuum ultraviolet to infrared. J. Vac. Sci. Technol. A 21, 1103 (2003). doi:10.1116/1.1569928

    Article  Google Scholar 

  63. E. Gilli, M. Kornschober, R. Schennach, Optical arrangement and proof of concept prototype for mid infrared variable angle spectroscopic ellipsometry. Infrared Phys. Technol. 55, 84–92 (2012). doi:10.1016/j.infrared.2011.09.006

    Article  Google Scholar 

  64. T.D. Kang, E. Standard, G.L. Carr, T. Zhou, M. Kotelyanskii, A.A. Sirenko, Rotatable broadband retarders for far-infrared spectroscopic ellipsometry. Thin Solid Films 519, 2698–2702 (2011). doi:/10.1016/j.tsf.2010.12.057

    Article  Google Scholar 

  65. C. Bernhar, J. Humlıcek, B. Keimer, Far-infrared ellipsometry using a synchrotron light source the dielectric response of the cuprate high Tc superconductors. Thin Solid Films 455–456, 143–149 (2004). doi:10.1016/j.tsf.2004.01.002

    Article  Google Scholar 

  66. T. Hofmann, C.M. Herzinger, A. Boosalis, T.E. Tiwald, J.A. Woollam, M. Schubert, Variable-wavelength frequency-domain terahertz ellipsometry. Rev. Sci. Instrum. 81, 023101 (2010). doi:10.1063/1.3297902

    Article  Google Scholar 

  67. J.M. Bennett, A critical evaluation of rhomb-type quarterwave retarders. Appl. Opt. 9, 2123–2129 (1970). doi:10.1364/AO.9.002123

    Article  Google Scholar 

  68. E. Garcia-Caurel, A. de Martino, B. Drévillon, Spectroscopic Mueller polarimeter based on liquid crystal devices. Thin Solid films 455–456, 120 (2003). doi:10.1016/j.tsf.2003.12.056

    Google Scholar 

  69. B. Drévillon, A. De Martino, Liquid crystal based polarimetric system, a process for the calibration of this polarimetric system, and a polarimetric measurement process. Patent number US 7,196,792 (filing date 2003)

    Google Scholar 

  70. T. Scharf, Polarized Light in Liquid Crystals and Polymers (Willey, New Jersey, 2007)

    Google Scholar 

  71. A. De Martino, Y-K. Kim, E. Garcia-Caurel, B. Laude, B. Drévillon, Optimized Mueller polarimeter with liquid crystals. Opt. Lett. 28, 619–618 (2003) doi:10.1364/OL.28.000616

    Google Scholar 

  72. S. Ben Hatit, M. Foldyna, A. De Martino, B. Drévillon, Angle-resolved Mueller polarimeter using a microscope objective. Phys. Stat. Sol. (a) 205, 743 (2008). doi:10.1002/pssa.200777806

  73. A. De Martino, S. Ben Hatit, M. Foldyna, Mueller polarimetry in the back focal plane. Proc. SPIE 6518, 65180X (2007). doi:10.1117/12.708627

    Article  Google Scholar 

  74. A. De Martino, E. Garcia-Caurel, B. Laude, B. Drévillon, General methods for optimized design and calibration of Mueller polarimeters. Thin Solid Films 455, 112–119 (2004). doi:10.1016/j.tsf.2003.12.052

    Article  Google Scholar 

  75. N.A. Beaudry, Y. Zhao, R.A. Chipman, Dielectric tensor measurement from a single Mueller matrix image. J. Opt. Soc. Am. A 24, 814 (2007). doi:10.1364/JOSAA.24.000814

    Article  Google Scholar 

  76. A. Lizana, M. Foldyna, M. Stchakovsky, B. Georges, D. Nicolas, E. Garcia-Caurel, Enhanced sensitivity to dielectric function and thickness of absorbing thin films by combining Total Internal Reflection Ellipsometry with Standard Ellipsometry and Reflectometry, to appear in Journal of Physics D. Applied Physics

    Google Scholar 

  77. G.E. Jellison, F.A. Modine, Parameterization of the optical functions of amorphous materials in the interband region. Appl. Phys. Lett. 69, 371–373 (1996). doi:10.1063/1.118064

    Article  Google Scholar 

  78. R.A. Synowicki, B.D. Johs, A.C. Martin, Optical properties of soda-lime float glass from spectroscopic ellipsometry. Thin Solid Films 519, 2907–2913 (2011). doi:10.1016/j.tsf.2010.12.110

    Article  Google Scholar 

  79. M. Philipp, M. Knupfer, B. Büchner, H. Gerardin, Plasmonic excitations in ZnO/Ag/ZnO multilayer systems: insight into interface and bulk electronic properties. J. Appl. Phys. 109, 063710–063716 (2011). doi:10.1063/1.3565047

    Article  Google Scholar 

  80. H. Raether, Surface Plasmons on Smoth and Rough Surfaces and on Gratings (Springer, Berlin, 1988)

    Google Scholar 

  81. F. Abelès, Surface electromagnetic waves ellipsometry. Surf. Sci. 56, 237–251 (1976). doi:10.1016/0039-6028(76)90450-7

    Article  Google Scholar 

  82. H. Arwin, M.K. Poksinski, K. Johansen, Total internal reflection ellipsometry: principles and applications. Appl. Opt. 43, 3028–3036 (2004). doi:10.1364/AO.43.003028

    Article  Google Scholar 

  83. T. Lopez-Rios, G. Vuye G, Use of surface plasmon excitation for determination of the thickness and the optical constants of very thin surface layers. Surf. Sci. 81, 529–538 (1979). doi:10.1016/0039-6028(79)90118-3

  84. P. Wissmann, H.-U. Finzel, Electrical Resistivity of Thin Metal Films (Springer Tracts in Modern, Physics, Berlin, 2007)

    Google Scholar 

  85. E.H. Sondheimer, The mean free path of electrons in metals. Adv. Phys. 50, 499–537 (2001). doi:10.1080/00018730110102187

  86. M. Foldyna, A. De Martino, R. Ossikovski, E. Garcia-Caurel, C. Licitra, Characterization of grating structures by Mueller polarimetry in presence of strong depolarization due to finite spot size and spectral resolution. Opt. Commun. 282, 735–741 (2009). doi:10.1016/j.optcom.2008.11.036

    Article  Google Scholar 

  87. J.M. Correas, P. Melero, J.J. Gil, Decomposition of Mueller matrices in pure optical media. Mon. Sem. Mat. Garcia de Galdeano 27, 233–240 (2003). Free PDF can be downloaded www.unizar.es/galdeano/actas_pau/PDF/233.pdf

  88. M. Foldyna, E. Garcia-Caurel, R. Ossikovski, A. De Martino, J.J. Gil, Retrieval of a non-depolarizing component of experimentally determined depolarizing Mueller matrices. Opt. Express 17, 12794–12806 (2009). doi:10.1364/OE.17.012794

    Article  Google Scholar 

  89. B.J. Rice, H. Cao, M. Grumski, J. Roberts, The limits of CD metrology. Microelectron. Eng. 83, 1023 (2006). doi:10.1063/1.2062991

    Google Scholar 

  90. See for example the proceedings of the conference “Advanced Lithography” available on line at the site of the SPIE, www.spie.org

  91. V. Ukraintsev, A comprehensive test of optical scatterometry readiness for 65 nm technology production. Proc. SPIE 6152, 61521G (2006). doi:10.1117/12.657649

    Article  Google Scholar 

  92. M. Foldyna, A. De Martino, D. Cattelan, F. Bogeat, C. Licitra, J. Foucher, P. Barritault, J. Hazart, Accurate dimensional characterization of periodic structures by spectroscopic Mueller polarimetry. Proc. SPIE 7140, 71400I (2008). doi:10.1117/12.804682

    Article  Google Scholar 

  93. L. Li, Symmetries of cross-polarization diffraction. J. Opt. Soc. Am. A 17, 881–887 (2000). doi:10.1364/JOSAA.17.000881

    Article  Google Scholar 

  94. A. De Martino, M. Foldyna, T. Novikova, D. Cattelan, P. Barritault, C. Licitra, J. Hazart, J. Foucher, F. Bogeat, Comparison of spectroscopic Mueller polarimetry, standard scatterometry and real space imaging techniques (SEM and 3D-AFM) for dimensional characterization of periodic structures. SPIE Proc 6922, 69221P (2008). doi:10.1117/12.772721

    Article  Google Scholar 

  95. M.G. Moharam, T.K. Gaylord, Diffraction analysis of dielectric surface-relief gratings. J. Opt. Soc. Am. 72, 1385 (1982). doi:10.1364/JOSA.72.001385

    Article  Google Scholar 

  96. R.M. Silver, B.M. Barnes, A. Heckert, R. Attota, R. Dixson, J. Jun, Angle resolved optical metrology. Proc. SPIE 6922, 69221M.1–69221M.12 (2008). doi:10.1117/12.777131

  97. P. Leray, S. Cheng, D. Kandel, M. Adel, A. Marchelli, I. Vakshtein, M. Vasconi, B. Salski, Diffraction based overlay metrology: accuracy and performance on front end stack. Proc. SPIE 6922, (2008) doi:10.1117/12.772516

  98. Y.-n. Kim, J.-s. Paek, S. Rabello, S. Lee, J. Hu, Z. Liu, Y. Hao, W. Mcgahan, Device based in-chip critical dimension and overlay metrology. Opt. Express 17, 21336–21343 (2009). doi:10.1364/OE.17.021336

    Google Scholar 

  99. T. Novikova, A. De Martino, R. Ossikovski, B. Drévillon, Metrological applications of Mueller polarimetry in conical diffraction for overlay characterization in microelectronics. Eur. Phys. J. Appl. Phys. 69, 63–69 (2005). doi:10.1051/epjap:2005034

    Article  Google Scholar 

  100. C. Fallet, Polarimétrie de Mueller résolue angulairement et applications aux structures périodiques. Ph.D. Thesis, Ecole Polytechnique, (2011). The manuscript can be freely downloaded at http://pastel.archives-ouvertes.fr/pastel-00651738/

  101. M.R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, A. De Martino, Impact of model parameters on Monte Carlo simulations of backscattering Mueller matrix images of colon tissue. Biomed. Opt. Express 2, 1836–1851 (2011). doi:10.1364/BOE.2.001836

    Article  Google Scholar 

  102. A. Pierangelo, A. Benali, M.R. Antonelli, T. Novikova, P. Validire, B. Gayet, A. De Martino, Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging. Opt. Express 19, 1582–1593 (2011). doi:10.1364/OE.19.001582

    Article  Google Scholar 

Download references

Acknowledgments

We would like to express our deep gratitude to the editors of this book for giving us the opportunity, (the place in terms of pages, and specially the time) that we needed to write this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enric Garcia-Caurel .

Editor information

Editors and Affiliations

Appendices

Appendix 1. Mueller Matrices of Some Common Optical Retarders and Diattenuators

In the following we provide specific expressions for Mueller matrices corresponding to different types of general and fundamental optical elements.

Homogeneous Elliptic Diattenuator

The following expression corresponds to the Mueller matrix of a homogeneous elliptic diattenuator oriented with an azimuth angle \(\uptheta \) respect to the laboratory axis.

$$\begin{aligned} \mathbf{M}&=\frac{\tau _P }{2}\left( {{\begin{array}{cccc} 1&{C\cos 2\Psi }&{S\cos 2\Psi \cos (\delta )}&{S\cos 2\Psi \sin (\delta )} \\ {C\cos 2\Psi }&{C^{2}+S^{2}\sin 2\Psi }&{CS\cos (\delta )\left( {1-\sin 2\Psi } \right)}&{CS\sin (\delta )\left( {1-\sin 2\Psi } \right)} \\ {S\cos 2\Psi \cos (\delta )}&{CS\cos (\delta )\left( {1-\sin 2\Psi } \right)}&{\left( {S^{2}+C^{2}\sin 2\Psi } \right)\cos ^{2}\left( \delta \right)+\sin 2\Psi \sin ^{2}\left( \delta \right)}&{S^{2}\cos \left( \delta \right)\sin (\delta )\left( {1-\sin 2\Psi } \right)} \\ {S\cos 2\Psi \sin (\delta )}&{CS\sin (\delta )\left( {1-\sin 2\Psi } \right)}&{S^{2}\cos \left( \delta \right)\sin (\delta )\left( {1-\sin 2\Psi } \right)}&{\left( {S^{2}+C^{2}\sin 2\Psi } \right)\sin ^{2}\left( \delta \right)+\sin 2\Psi \cos ^{2}\left( \delta \right)} \\ \end{array} }} \right) \\ C&=\cos \left( {2\theta } \right);\;S=\sin \left( {2\theta } \right) \end{aligned}$$
(A1.1)

In expression () the angles \(\Psi \) and \(\Delta \) are the ellipsometric angles with its standard meaning, and the angle \(\updelta \) represents the ellipticity of the eigenvalues of the elliptic retarder.

The following Table A1.1 provides matrices representing some particular cases of the previous general formula corresponding to ideal circular polarizers, dichroic circular polarizers and an ideal elliptical polarizer elliptical oriented at particular angles respect to the laboratory axis.

Table 2.2 In the table there are summarized the eigenvectors, the Jones matrices, the Mueller matrices and the vector diattenuation for some particular cases of the general expression ()

Table A1.1 provides matrices representing some particular cases of the previous general formula corresponding to ideal linear polarizers and dichroic linear polarizers oriented at particular angles respect to the laboratory axis.

The following expression corresponds to the Mueller matrix of a homogeneous elliptic retarder oriented with an azimuth angle \(\uptheta \) respect to the laboratory axis. The retardance provided by the system is \(\Delta \). The phase difference between the two linear components needed to build an ellipse is given by the angle \(\upvarphi \).

$$\begin{aligned} \mathbf{M}=\frac{\tau _P }{2}\left( {{\begin{array}{cccc} 1&0&0&0 \\ 0&{d^{2}-e^{2}-f^{2}+g^{2}}&{2\left( {de+fg} \right)}&{2\left( {df-eg} \right)} \\ 0&{2\left( {de-fg} \right)}&{-d^{2}+e^{2}-f^{2}+g^{2}}&{2\left( {ef+dg} \right)} \\ 0&{2\left( {df+eg} \right)}&{2\left( {ef-dg} \right)}&{-d^{2}-e^{2}+f^{2}+g^{2}} \\ \end{array} }} \right) \end{aligned}$$
(A1.2)
$$\begin{aligned}&d=\cos \left( {2\theta } \right)\sin \left( {\frac{\Delta }{2}} \right);\;e=\sin \left( {2\theta } \right)\sin \left( {\frac{\Delta }{2}} \right)\cos \left( \varphi \right);\\&f=\sin \left( {2\theta } \right)\sin \left( {\frac{\Delta }{2}} \right)\sin \left( \varphi \right);\;g=\cos \left( {\frac{\Delta }{2}} \right) \end{aligned}$$

Table A1.2 provides Mueller matrices representing some particular cases of the previous general formula corresponding to circular retarders and linear retarders oriented at particular angles respect to the x–y reference coordinate axis.

Appendix 2. Differential Matrices of Fundamental Polarimetric Properties

In this appendix we provide a detailed expression of the differential matrices corresponding to the eight fundamental polarimetric properties, written according to the \(4\times 4\) Stokes formalism and the \(2\times 2\) Jones formalism. We also provide the way to deduce them from the original Mueller or Stokes matrices.

Table 2.3 List of the eigenvectors, the Jones matrices, the Mueller matrices and the vector diattenuation for some particular cases of the general expression ()

Mueller matrix of an homogeneous elliptic retarder

Table 2.4 This table summarizes the eigenvalues, the Jones matrices, the Mueller matrices and the vector retardances corresponding to some particular cases of the general expression ()

According to [26, 27] the differential matrix m of a given Mueller matrix M is a \(4\times 4\) matrix containing simple expressions of the fundamental polarimetric properties: isotropic refraction, \(\upvarphi \) isotropic absorption, \(\upalpha \), linear birefringence along the coordinate axis x–y, \(\upeta \), linear dichroism along the coordinate x–y, \(\upbeta \), linear birefringence along the bisectors to the coordinate axis x–y, \(\upeta \), linear dichroism along the bisectors to the coordinate axis x–y, \(\upgamma \), circular birefringence, \(\upmu \), and circular dichroism, \(\updelta \). The bisectors to the coordinate axis x–y form a coordinate axes rotated \(45^{\circ }\) respect to the x–y. A particular choice of the x–y axis well adapted for ellipsometric measurements in reflection, or in transmission with tilted samples, is the p-s axis defined respect to the plane of incidence. When light propagates along the z direction in an anisotropic medium, which is considered as homogeneous in the x, y directions, the transformation of the Stokes vector at a given position z, S(z) to a Stokes vector at a given position S(\(\mathrm{z}+\Delta \)z) can be described by the Mueller matrix \(\mathbf{M}_{\mathbf{z},{{\varvec{\Delta }}}\mathbf{z}}\). The transformation can be written according to the following expression:

$$\begin{aligned} \mathbf{S}(z+\Delta z)=\mathbf{M}_{\mathbf{z},{{\varvec{\Delta }}}\mathbf{z}} \mathbf{S}(z) \end{aligned}$$
(A2.1)

Subtraction of S(z) from both sides of expression () leads to:

$$\begin{aligned} \mathbf{S}(z+\Delta z)-\mathbf{S}(z)=\mathbf{S}(z)\left( {\mathbf{M}_{\mathbf{z},{{\varvec{\Delta }}}\mathbf{z}} -\mathbf{I}} \right) \end{aligned}$$
(A2.2)

where I is the identity matrix. Clearly, if the latter expression is divided by \(\Delta \)z and then the it is extrapolated to the limiting case of \(\Delta \mathrm{z} \rightarrow 0\), then it is possible to obtain the following expression relating the transformation of the Stokes vector:

$$\begin{aligned} \frac{d\mathbf{S}}{dz}=\mathop {\lim }\limits _{\Delta z\rightarrow 0} \frac{\left(\mathbf{M}_{\mathbf{z},{{\varvec{\Delta }}}\mathbf{z}} -\mathbf{I} \right)}{\Delta z}\mathbf{S}(z)=\mathbf{mS}(z) \end{aligned}$$
(A2.3)

The latter equation is the definition of the matrix m in the \(4\times 4\) Stokes formalism. The derivation of expression () is valid for either a non-depolarizing or a depolarizing medium. The matrix m is the expression of the effect of the different optical properties of the medium on the Stokes vector when light travels a differential distance \(\Delta \)z. For this reason the matrix m is called the differential propagation matrix, or simply the differential matrix.

The relation of () with the expression (2.52) given in the text is easily found. The transformation of an initial Stokes vector S(0) of a beam traveling a distance z inside a medium can be written as:

$$\begin{aligned} \mathbf{S}(z)=\mathbf{M}_\mathbf{z} \mathbf{S}(0) \end{aligned}$$
(A2.4)

After differentiating the previous expression respect to z one gets:

$$\begin{aligned} \frac{d\mathbf{S}}{dz}=\frac{d\mathbf{M}_\mathbf{z} }{dz}\mathbf{S}(0) \end{aligned}$$
(A2.5)
Table 2.5 Differential matrices m and n corresponding to the eight fundamental polarimetric properties

According to () the latter expression can be rewritten as:

$$\begin{aligned} \frac{d\mathbf{S}}{dz}=\mathbf{mS}(z)=\mathbf{mM}_\mathbf{z} \mathbf{S}(0)=\frac{d\mathbf{M}_\mathbf{z} }{dz}\mathbf{S}(0) \end{aligned}$$
(A2.6)

Thus giving an analogous definition of the matrix m which is identical to (2.52):

$$\begin{aligned} \mathbf{M}_\mathbf{z}^{-1} \frac{d\mathbf{M}_\mathbf{z} }{dz}=\mathbf{m} \end{aligned}$$
(A2.7)

An analogous procedure may be performed using Jones vectors instead of Stokes vectors leading to the derivation of a \(2\times 2\) matrix called n. Obviously the applicability of matrix n is restricted to non-depolarizing media.

As an illustration, of the method to obtain the expression of the differential matrices m and n, let’s consider their detailed derivation for the particular case of a homogeneous medium along the propagation direction, of total thickness z, showing linear birefringence characterized by the parameter \(\upeta \). The respective Mueller and Jones matrices associated to this medium are:

$$\begin{aligned} \mathbf{M}=\left( {{\begin{array}{cccc} 1&0&0&0 \\ 0&1&0&0 \\ 0&0&{\cos (\eta z)}&{\sin (\eta z)} \\ 0&0&{-\sin (\eta z)}&{\cos (\eta z)} \\ \end{array} }} \right)\quad \mathrm{{and}}\quad \mathbf{J}=\left( {{\begin{array}{cc} {e^{i\frac{\eta }{2}z}}&0 \\ 0&{e^{-i\frac{\eta }{2}z}} \\ \end{array} }} \right)\quad \mathrm{{where}}\quad \eta =\frac{4\pi {birr}}{\lambda } \end{aligned}$$
(A2.8)

The total retardance created by the medium, commonly expressed by the ellipsometric angle \(\Delta \) is given by \(\eta \) times the thickness z. The parameter \(\upeta \) is the intensive retardance, also called the differential retardance, whereas \(\Delta \) is the extensive retardance, which is proportional to the path that light has travelled inside the medium. The differential retardance depends of the wavelength of light, \(\lambda \), and the birefringence of the medium, birr.

For a thin section of thickness \(\Delta \)z of the material, the corresponding Jones and Mueller matrices can be calculated expanding the terms of matrices in () in a Taylor series expansion respect to z and retaining only the first order terms.

$$\begin{aligned} \mathbf{M}_{{\varvec{\Delta }}\mathbf{z}} =\left( {{\begin{array}{cccc} 1&0&0&0 \\ 0&1&0&0 \\ 0&0&1&{\eta z} \\ 0&0&{-\eta z}&1 \\ \end{array} }} \right)\quad \mathrm{{and}}\quad \mathbf{J}_{{\varvec{\Delta }}\mathbf{z}}=\left( {{\begin{array}{cc} {1+\frac{i\eta z}{2}}&0 \\ 0&{1-\frac{i\eta z}{2}} \\ \end{array} }} \right) \end{aligned}$$
(A2.9)

Then according to () after subtraction of the respective (\(2\times 2\)) and (\(4\times 4\)) unit matrices and division by z, one gets:

$$\begin{aligned} \mathbf{m}=\left( {{\begin{array}{cccc} 0&0&0&0 \\ 0&0&0&0 \\ 0&0&0&\eta \\ 0&0&{-\eta }&0 \\ \end{array} }} \right)\quad \mathrm{{and}}\quad \mathbf{n}=\frac{\eta }{2}\left( {{\begin{array}{cc} i&0 \\ 0&{-i} \\ \end{array} }} \right) \end{aligned}$$
(A2.10)

The matrices (\(4\times 4\)) and (\(2\times 2\)) m and n matrices grouped in Table A2.2 the following table are the result of applying the same procedure to each one of the eight fundamental properties:

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Garcia-Caurel, E., Ossikovski, R., Foldyna, M., Pierangelo, A., Drévillon, B., De Martino, A. (2013). Advanced Mueller Ellipsometry Instrumentation and Data Analysis. In: Losurdo, M., Hingerl, K. (eds) Ellipsometry at the Nanoscale. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33956-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33956-1_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33955-4

  • Online ISBN: 978-3-642-33956-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics