Skip to main content

An Adaptive Fuzzy Based System for Time Critical Real World Applications

  • Chapter
Intelligent Autonomous Systems 12

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 193))

  • 4112 Accesses

Abstract

From a control theory point of view, robotics and artificial intelligence offer exceptionally complex problems. Often the examined control systems have a high number of inputs and outputs, show a black-box behaviour and can not be systematically analyzed due to a vague output and long reaction times. Adaptive behaviour control and enhancement during runtime of robots moving with high speed is such a problem, with the added requirement of real-time capability. In this paper, an adaptive pre-calculated fuzzy system is proposed as a possible solution for this task. The basic structure, construction process and adaption mechanism are described, furthermore the runtime for various dimensions is benchmarked as efficiency aspects are a major contribution of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pineau, J., Thrun, S.: High-level robot behavior control using pomdps. In: AAAI Workshop Notes (2002)

    Google Scholar 

  2. Tunstel, E.: Mobile robot autonomy via hierarchical fuzzy behavior control. In: 6th Intl. Symp. on Robotics and Manufacturing, WAC 1996, pp. 837–842. ASME Press (1996)

    Google Scholar 

  3. Mota, L., Reis, L.P.: Setplays: achieving coordination by the appropriate use of arbitrary pre-defined flexible plans and inter-robot communication. In: Proceedings of the 1st International Conference on Robot Communication and Coordination, RoboComm 2007, p. 13:1–13:7. IEEE Press, Piscataway (2007)

    Google Scholar 

  4. Mota, L., Reis, L.P., Lau, N.: Multi-robot coordination using setplays in the middle-size and simulation leagues. Mechatronics (July 2010)

    Google Scholar 

  5. McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biology 5, 1–13 (1943)

    Google Scholar 

  6. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies 7, 115–133 (1975)

    Article  Google Scholar 

  7. Lee, S.H., Suh, I.H.: Bayesian network-based behavior control for skilligent robots. In: IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 2910–2916 (May 2009)

    Google Scholar 

  8. Bellas, F., Duro, R.J.: Introducing long term memory in an ann based multilevel darwinist brain. In: Proceedings of the Artificial and Natural Neural Networks 7th International Conference on Computational Methods in Neural Modeling - Volume 1, IWANN 2003, pp. 590–597. Springer, Heidelberg (2003)

    Google Scholar 

  9. Chen, J., Patyra, M.J.: Vhdl modeling of a multivariable fuzzy logic controller hardware system. In: Proceedings of the Third IEEE Conference on IEEE World Congress on Computational Intelligence Fuzzy Systems, vol. 1, pp. 129–132 (1994)

    Google Scholar 

  10. Chiueh, T.: Optimization of fuzzy logic inference architecture. Computer 25(5), 67–71 (1992)

    Article  Google Scholar 

  11. Aja-Fernandez, S., Alberola-Lopez, C.: Fast inference in sam fuzzy systems using transition matrices. IEEE Transactions on Fuzzy Systems, 170–182 (April 2004)

    Google Scholar 

  12. Ostrowski, P.Y.K., Cheung, D.J., Roubaud, K.: An outline of the intuitive design of fuzzy logic and its efficient implementation. In: Proceedings of the Second IEEE International Conference on Fuzzy Systems, vol. 1, pp. 184–189 (1993)

    Google Scholar 

  13. Wang, L.-X.: Stable adaptive fuzzy control of nonlinear systems. IEEE Transactions on Fuzzy Systems 1(2), 146–155 (1993)

    Article  Google Scholar 

  14. Li, H.-X., Tong, S.: A hybrid adaptive fuzzy control for a class of nonlinear mimo systems. IEEE Transactions on Fuzzy Systems 11(1), 24–34 (2003)

    Article  Google Scholar 

  15. Chen, B., Liu, X., Tong, S.: Adaptive fuzzy output tracking control of mimo nonlinear uncertain systems. IEEE Transactions on Fuzzy Systems 15(2), 287–300 (2007)

    Article  Google Scholar 

  16. Golea, N., Golea, A., Barra, K., Bouktir, T.: Observer-based adaptive control of robot manipulators: Fuzzy systems approach. Applied Soft Computing 8(1), 778–787 (2008)

    Article  Google Scholar 

  17. Coello, C.A., Lamont, G.B., Veldhuizen, D.: Evolutionary Algorithms for Solving Multi-Objective Problems, XXII, 2nd edn. Springer-Verlag New York, Inc. (2007)

    Google Scholar 

  18. Cao, Y., Chen, Y., Zhao, Y.: Stochastic System Identification by Evolutionary Algorithms. In: Huang, D.-S., Gan, Y., Premaratne, P., Han, K. (eds.) ICIC 2011. LNCS, vol. 6840, pp. 247–252. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Kattmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kattmann, C., Zweigle, O., Häussermann, K., Levi, P. (2013). An Adaptive Fuzzy Based System for Time Critical Real World Applications. In: Lee, S., Cho, H., Yoon, KJ., Lee, J. (eds) Intelligent Autonomous Systems 12. Advances in Intelligent Systems and Computing, vol 193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33926-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33926-4_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33925-7

  • Online ISBN: 978-3-642-33926-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics