Skip to main content

Silicon Based Photovoltaic Materials

  • Chapter
Eco- and Renewable Energy Materials

Abstract

Solar energy is an idea renewable energy resource due to its abundance and inexhaustibility. Solar cells, which convert sunlight into electricity, are the most direct devices to use solar energy. Silicon is the most widely used material for solar cells due to its abundance in nature, stability, non-toxicity and well established refining and processing technologies. This chapter, which is divided into five sections, presents a brief review on the research progress of silicon as photovoltaic materials. After a short introduction in section 1, section 2 summarizes the history and current situation of the traditional wafer-based crystalline silicon solar cells. Section 3 draws attention to the development of thin-film silicon solar cells which have the significant advantage in cost reduction. The recently active and compelling nano-structured silicon technologies are reviewed in section 4. Finally, a conclusion and perspective is presented as section 5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Markvart T. Solar Electricity (2nd edition). Chichester: John Wiley and Sons, 2000.

    Google Scholar 

  2. Green M A. Solar Cells: Operating Principles, Technology and System Applications. New Jersey: Prentice-Hall, 1982.

    Google Scholar 

  3. Green M A. The future of crystalline silicon solar cells. Progress in Photovoltaics: Research and Applications, 2000, (1): 127–139.

    Article  Google Scholar 

  4. Pizzini S. Bulk solar grade silicon: How chemistry and physics play to get a benevolent microstructured material. Applied Physics A: Materials Science and Processing, 2009, 96(1): 171–188.

    Article  Google Scholar 

  5. Poortmans J, Arkhipov V. Thin Film Solar Cells: Fabrication, Characterization and Applications. New York: John Wiley and Sons, 2006.

    Book  Google Scholar 

  6. Hamakawa Y. Thin-Films Solar Cells. Berlin Heidelberg: Springer-Verlag, 2004.

    Book  Google Scholar 

  7. Schropp R E I, Carius R, Beaucarne G. Amorphous silicon, microcrystalline silicon, and thin-film polycrystalline silicon solar cells. Materials Research Society Bulletin, 2007, 32(3): 219–224.

    Article  Google Scholar 

  8. Shah A V, Schade H, Vanecek M, et al. Thin-film silicon solar cell technology. Progress in Photovoltaics: Research and Applications, 2004, 12(23): 113–142.

    Article  Google Scholar 

  9. Wan Y, Sha J, Chen B, et al. Nanodevices based on silicon nanowires. Recent Patents on Nanotechnology, 2009, 3(1):1–9.

    Article  Google Scholar 

  10. Green M A. Third generation photovoltaics: Solar cells for 2020 and beyond. Physica E: Low-dimensional Systems and Nanostructures, 2002, 14(1–2): 65–70.

    Article  Google Scholar 

  11. Panek P, Lipiski M, Dutkiewicz J. Texturization of multicrystalline silicon by wet chemical etching for silicon solar cells. Journal of Material Science, 2005, 40(6):1459–1463.

    Article  Google Scholar 

  12. Yerokhov V Y, Hezel R, Lipinski M, et al. Cost-effective methods of texturing for silicon solar cells. Solar Energy Materials and Solar Cells, 2002, 72(1–4): 291–298.

    Article  Google Scholar 

  13. Fukui K, Inomata Y, Shirasawa K. Surface texturing using reactive ion etching for multicrystalline silicon solar cell//Proceedings of the 26th IEEE Photovoltaic Specialists Conference, PVSC’97, Anaheim, 1997: 47–50.

    Google Scholar 

  14. Fath P, Marckmann C, Bucher E, et al. Multicrystalline silicon solar cells using a new high throughput mechanical texturization technology and a roller printing metallization technique// Proceedings of the 13th European PV Solar Energy Conference, Nice, 1995: 29–32.

    Google Scholar 

  15. Gerhards C, Marckmann C, Tolle R, et al. Mechanically V-textured low cost multicrystalline silicon solar cells with a novel printing metallization// Proceedings of the 26th IEEE Photovoltaic Specialists Conference, PVSC’97, Anaheim, 1997: 43–46.

    Google Scholar 

  16. Hahn G, Schönecker A. New crystalline silicon ribbon materials for photovoltaics. Journal of Physics: Condensed Matter, 2004, 16: R1615–R1648.

    Google Scholar 

  17. Schmidt W, Woesten B, Kalejs J P. Manufacturing technology for ribbon silicon (EFG) wafers and solar cells. Progress in Photovoltaics: Research and Applications, 2002, 10(2): 129–140.

    Article  Google Scholar 

  18. Chittick R C, Alexande J H, Sterling H F. The preparation and properties of amorphous silicon. Journal of the Electrochemical Society, 1969, 116: 77–81.

    Article  Google Scholar 

  19. Spear W E, Lecomber P G. Properties of substitutionally doped amorphous Si and Ge. Philosophical Magazine, 1976, 33: 935–949.

    Article  Google Scholar 

  20. Fritzsche H. Early research on amorphous silicon: Errors and missed opportunities. Materials Research Society Symposium Proceedings. 2001, 609: 1–12.

    Google Scholar 

  21. Carlson D E, Wronski C R. Amorphous silicon solar cells. Applied Physics Letters, 1976, 28(11): 671–673.

    Article  Google Scholar 

  22. Carlson D E, Wronski C R, Pankove J I. Properties of amorphous silicon and a-Si solar cells. RCA Review, 1977, 38: 211–225.

    Google Scholar 

  23. Catalano A, D’Aiello R, Dresner J, et al. Attainment of 10% conversion efficiency in amorphous silicon solar fills// Proceedings of the 16th IEEE Photovoltaic Specialists Conference, San Diego, 1982, 1421–1422.

    Google Scholar 

  24. Staebler D L, Wronski C R. Reversible conductivity changes in dischargeproduced amorphous silicon. Applied Physics Letters, 1977, 31(4): 292–294.

    Article  Google Scholar 

  25. Veprek S, Marecek V. The preparation of thin layers of Ge and Si by chemical hydrogen plasma transport. Solid State Electronics, 1968, 11(7): 683–684.

    Article  Google Scholar 

  26. Klein S, Finger F, Carius R, et al. Intrinsic microcrystalline silicon prepared by hot-wire chemical vapour deposition for thin film solar cells. Thin Solid Films 2003, 430(1–2): 202–207.

    Article  Google Scholar 

  27. Fonrodona M, Soler D, Asensi J M, et al. Influence of the crystalline fraction on the stability of nanocrystalline silicon solar cells// Proceedings of the 3rd World Conference on PVSEC, Osaka, 2003: 11–18.

    Google Scholar 

  28. Ahn J Y, Jun K H, Lim K S. Stable protocrystalline silicon and unstable 22 Eco-and Renewable Energy Materials microcrystalline silicon at the onset of a microcrystalline regime. Applied Physics Letters, 2003, 82(11): 1718–1720.

    Article  Google Scholar 

  29. Beck N, Torres P, Fric J, et al. Optical and electrical properties of undoped microcrystalline silicon deposited by the VHF-GD with different dilutions of silane in hydrogen. Proceedings of the Materials Research Society Symposium, 1997, 452: 761–766.

    Article  Google Scholar 

  30. Poruba A, Fejfar A, Remes Z, et al. Optical absorption and light scattering in microcrystalline silicon thin films and solar cells. Journal of Applied Physics, 2000, 88(1): 148–160.

    Article  Google Scholar 

  31. Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth. Applied Physics Letters, 1964, 4(5): 89–90.

    Article  Google Scholar 

  32. Givargizov E I. Fundamental aspects of VLS growth. Journal of Crystal Growth, 1975, 31(1): 20–30.

    Article  Google Scholar 

  33. Ma D D D, Lee C S, Au F C K, et al. Small-diameter silicon nanowire surfaces. Science, 2003, 299: 1874–1877.

    Article  Google Scholar 

  34. Read A J, Needs R J, Nash K J, et al. First-principles calculations of the electronic properties of silicon quantum wires. Physical Review Letters, 1992, 69(8): 1232–1235.

    Article  Google Scholar 

  35. Vo T, Williamson A J, Galli G. First principles simulations of the structural and electronic properties of silicon nanowires. Physical Review B, 2006, 74(4): 045116.

    Article  Google Scholar 

  36. Migas D B, Borisenko V E. Tailoring the character of the band-gap in < 011 >-, < 111 >-and < 112 >-oriented silicon nanowires. Nanotechnology, 2007, 18: 375703.

    Article  Google Scholar 

  37. Kelzenberg M D, Turner-Evans D B, Kayes B M, et al. Photovoltaic measurements in single-nanowire silicon solar cells. Nano Letters, 2008, 8(2): 710–714.

    Article  Google Scholar 

  38. Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth. Applied Physics Letters, 1964, 4(5): 89–90.

    Article  Google Scholar 

  39. Zhang R Q, Lifshitz Y, Lee S T. Oxide-assisted growth of semiconducting nanowires. Advanced Materials, 2003, 15(7–8): 635–640.

    Article  Google Scholar 

  40. Li C P, Lee C S, Ma X L, et al. Growth direction and cross-sectional study of silicon nanowires. Advanced Materials, 2003, 15(7–8): 607–609.

    Article  MATH  Google Scholar 

  41. Garnett E C, Liang W J, Yang P D. Growth and electrical characteristics of platinum-nanoparticle-catalyzed silicon nanowires. Advanced Materials, 2007, 19(19): 2946–2950.

    Article  Google Scholar 

  42. Wang Y W, Schmidt V, Senz S, et al. Epitaxial growth of silicon nanowires using an aluminium catalyst. Nature Nanotechnology, 2006, 1(3): 186–189.

    Article  Google Scholar 

  43. Peng K Q, Yan Y J, Gao S P, et al. Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry. Advanced Materials, 2002, 14(16): 1164–1167.

    Article  Google Scholar 

  44. Peng K Q, Yan Y J, Gao S P, et al. Dendrite-assisted growth of silicon nanowires in electroless metal deposition. Advanced Functional Materials, 2003, 13(2): 127–132.

    Article  Google Scholar 

  45. Peng K Q, Hu J J, Yan Y J, et al. Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Advanced Functional Materials, 2006, 16(3): 387–394.

    Article  Google Scholar 

  46. Peng K Q, Fang H, Hu J J, et al, Metal-particle-induced, highly localized site-specific etching of Si and formation of sfigle-crystalline Si nanowires in aqueous fluoride solution. Chemistry-A European Journal, 2006, 12(30): 7942–7947.

    Article  Google Scholar 

  47. Tian B, Zheng X, Kempa T J, et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature, 2007, 449: 885–890.

    Article  Google Scholar 

  48. Kayes B M, Lewis N S, Atwater H A. Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. Journal of Applied Physics, 2005, 97(11): 114302–114311.

    Article  Google Scholar 

  49. Garnett E C, Yang P D. Silicon nanowire radial p-n junction solar cells. Journal of the American Chemical Society, 2008, 130(29): 9224–9225.

    Article  Google Scholar 

  50. Kelzenberg M D, Boettcher S W, Petykiewicz J A, et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nature Materials, 2010, 9(3): 239–244.

    Google Scholar 

  51. Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 1961, 32(3): 510–519.

    Article  Google Scholar 

  52. Hanna M C, Nozik A J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. Journal of Applied Physics, 2006, 100(7): 074510.

    Article  Google Scholar 

  53. Schaller R D, Klimov V I. High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Physical Review Letters, 2004, 92(18): 186601.

    Article  Google Scholar 

  54. Ellingson R J, Beard M C, Johnson J C, et al. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Letters, 2005, 5(5): 865–871.

    Article  Google Scholar 

  55. Nozik A J. Multiple exciton generation in semiconductor quantum dots. Chemical Physics Letters, 2008, 457(1–3): 3–11.

    Article  Google Scholar 

  56. Cho E C, Park S, Hao X, et al. Silicon quantum dot/crystalline silicon solar cells. Nanotechnology, 2008, 19(24): 245201.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Science Press Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, C. (2013). Silicon Based Photovoltaic Materials. In: Zhou, Y. (eds) Eco- and Renewable Energy Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33497-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33497-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33496-2

  • Online ISBN: 978-3-642-33497-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics