Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 192))

Abstract

This note deals with the chaos synchronization problem using unknown inputs Takagi-Sugeno fuzzy observer. The design of observers for Takagi-Sugeno (T-S) fuzzy models subject to unknown inputs is first considered. Based on Linear Matrix Inequalities (LMI) terms and Lyapunov method, sufficient design conditions are given. The pole placement in an LMI region is also considered to improve the observer performances. The proposed approach can be also used in a chaotic cryptosystem procedure where the plaintext (message) is encrypted using chaotic signals at the drive system side. The resulting ciphertext is embedded to the state of the drive system and is sent via public channel to the response system. The plaintext is retrieved via the designed unknown input observer. An example is given to illustrate the effectiveness of the derived results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pikovsky, A., Rosemblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press (2001) ISBN 0-521-53352-X

    Google Scholar 

  2. Gonzalez-Miranda, J.M.: Synchronization and Control of Chaos. An introduction for scientists and engineers. Imperial College Press (2004) ISBN 1-86094-488-4

    Google Scholar 

  3. Controlling chaos. In: Schuster, H.G. (ed.) Handbook of Chaos Control. Wiley-VCH, New York

    Google Scholar 

  4. Sushchik, M.M., Rulkov, N.F., Tsimring, L.S., Abarbanel, H.D.I.: Generalized synchronization of chaos in directionally coupled chaotic systems. In: Proceedings of 1995 Intl. Symp. on Nonlinear Theory and Appl., vol. 2, pp. 949–952. IEEE (1995)

    Google Scholar 

  5. Brown, R., Rulkov, N.F., Tracy, E.R.: Modeling and synchronization chaotic system from time-series data. Phys. Rev. E 49, 3784 (1994)

    Article  Google Scholar 

  6. Rulkov, N.F., Sushchik, M.M.: Robustness of synchronized chaotic oscillations. International Journal of Bifurcation and Chaos 7, 625 (1997)

    Article  MATH  Google Scholar 

  7. Nolle, L., Goodyear, A., Hopgood, A.A., Picton, P.D., Braithwaite, N.: On Step Width Adaptation in Simulated Annealing for Continuous Parameter Optimisation. In: Reusch, B. (ed.) Fuzzy Days 2001. LNCS, vol. 2206, pp. 589–598. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Nolle, L., Zelinka, I., Hopgood, A.A., Goodyear, A.: Comparison of an self organizing migration algorithm with simulated annealing and differential evolution for automated waveform tuning. Advances in Engineering Software 36(10), 645–653 (2005)

    Article  Google Scholar 

  9. Zelinka, I., Nolle, L.: Plasma reactor optimizing using differential evolution. In: Price, K.V., Lampinen, J., Storn, R. (eds.) Differential Evolution: A Practical Approach to Global Optimization, pp. 499–512. Springer, New York (2006)

    Google Scholar 

  10. Zelinka, I.: Investigation on Evolutionary Deterministic Chaos Control. IFAC, Prague (2005)

    Google Scholar 

  11. Ivan, Z.: Investigation on Evolutionary Deterministic Chaos Control – Extended Study. In: 19th International Conference on Simulation and Modeling (ECMS 2005), Riga, Latvia, June 1-4 (2005b)

    Google Scholar 

  12. Zelinka, I., Senkerik, R., Navratil, E.: Investigation on Evolutionary Optimitazion of Chaos Control. Chaos, Solitons, Fractals (2007), doi:10.1016/j.chaos.2007.07.045

    Google Scholar 

  13. Zelinka, I., Celikovsky, S., Richter, H., Chen, G.: Evolutionary Algorithms and Chaotic Systems. Springer, Germany (2010)

    Book  MATH  Google Scholar 

  14. Boyd, S., et al.: Linear matrix inequalities in systems and control theory. SIAM, Philadelphia (1994)

    Book  Google Scholar 

  15. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modelling and control. IEEE Trans. on Systems, Man, Cybernetics 15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  16. Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A linear Matrix Inequality Approach. John Wiley & Sons, Inc. (2001)

    Google Scholar 

  17. Chadli, M., Maquin, D., Ragot, J.: Stability analysis and design for continuous-time Takagi-Sugeno control systems. International Journal of Fuzzy Systems 7(3), 101–109 (2005)

    MathSciNet  Google Scholar 

  18. Johansson, M., Rantzer, A., Arzén, K.: Piecewise quadratic stability of fuzzy systems. IEEE Trans. on Fuzzy Systems 7(6), 713–722 (1999)

    Article  Google Scholar 

  19. Xiaodiong, L., Qingling, Z.: New approach to H  ∞  controller designs based on observers for T-S fuzzy systems via LMI. Automatica 39, 1571–1582 (2003)

    Article  Google Scholar 

  20. Tanaka, K., Hori, T., Wang, H.O.: A multiple Lyapunov function approach to stabilization of fuzzy control systems. IEEE Transactions on Fuzzy Systems 11(4), 582–589 (2003)

    Article  Google Scholar 

  21. Chadli, M.: An LMI approach to design observer for unknown inputs Takagi-Sugeno fuzzy models. Asian Journal of Control 12(4), 524–530 (2010)

    MathSciNet  Google Scholar 

  22. Chilali, M., Gahinet, P.: ÒH  ∞  Design with pole placement constraints: an LMI approch. IEEE Transactions on Automatic Control 41(3), 358–367 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, C., Liao, X., Wong, K.: Lag synchronization of hyperchaos with application to secure communications. Chaos, Solitons and Fractals 23, 183–193 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chen, M., Zhou, D., Shang, Y.: A new observer-based synchronization scheme for private communication. Chaos, Solitons and Fractals 24, 1025–1030 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Boutayeb, M., Darouach, M., Rafaralahy, H.: Generalized State-Space Observers for Chaotic Synchronization and Secure Communication. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 49(3), 345–349 (2002)

    Article  MathSciNet  Google Scholar 

  26. Alvares, G., Montoya, F., Romera, M., Pastor, G.: Breaking parameter modulated chaotic secure communication system. Chaos, Solitons & Fractals 21(4), 783–787 (2004)

    Article  Google Scholar 

  27. Akhenak, A., Chadli, M., Ragot, J., Maquin, D.: Unknown input multiple observer based approach: application to secure communication. In: 1st IFAC Conference on Analysis and Control of Chaotic Systems, Reims, France, June 28-30 (2006)

    Google Scholar 

  28. Edwards, C., Spurgeon, S.K., Patton, R.J.: Sliding mode observers for fault detection and isolation. Automatica 36(4), 541–553 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Review 38(1), 49–95 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Chadli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chadli, M., Zelinka, I. (2013). Chaos Synchronization Based on Unknown Inputs Takagi-Sugeno Fuzzy Observer. In: Zelinka, I., Rössler, O., Snášel, V., Abraham, A., Corchado, E. (eds) Nostradamus: Modern Methods of Prediction, Modeling and Analysis of Nonlinear Systems. Advances in Intelligent Systems and Computing, vol 192. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33227-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33227-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33226-5

  • Online ISBN: 978-3-642-33227-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics