Skip to main content

On the Construction of Kernel-Based Adaptive Particle Methods in Numerical Flow Simulation

  • Chapter
Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 120))

Abstract

This contribution discusses the construction of kernel-based adaptive particle methods for numerical flow simulation, where the finite volume particle method (FVPM) is used as a prototype. In the FVPM, scattered data approximation algorithms are required in the recovery step of the WENO reconstruction. We first show how kernel-based approximation schemes can be used in the recovery step of particle methods, where we give preference to the radial polyharmonic spline kernel. Then we discuss important aspects concerning the numerical stability and approximation behaviour of polyharmonic splines. Moreover, we propose customized coarsening and refinement rules for the adaptive resampling of the particles. Supporting numerical examples and comparisons with other radial kernels are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abgrall, R.: On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. J. Comput. Phys. 144, 45–58 (1994)

    Article  MathSciNet  Google Scholar 

  2. Aboiyar, T., Georgoulis, E.H., Iske, A.: Adaptive ADER methods using kernel-based polyharmonic spline WENO reconstruction. SIAM J. Scient. Computing 32(6), 3251–3277 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Askey, R.: Radial Characteristic Functions. Technical report TSR # 1262, University of Wisconsin, Madison (1973)

    Google Scholar 

  4. Behrens, J., Iske, A., Pöhn, S.: Effective node adaption for grid-free semi-Lagrangian advection. In: Sonar, T., Thomas, I. (eds.) Discrete Modelling and Discrete Algorithms in Continuum Mechanics, Logos, pp. 110–119 (2001)

    Google Scholar 

  5. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  6. Duchon, J.: Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In: Schempp, W., Zeller, K. (eds.) Constructive Theory of Functions of Several Variables, pp. 85–100. Springer (1977)

    Google Scholar 

  7. Fasshauer, G.E.: Meshfree Approximation Methods with Matlab. Interdisciplinary Mathematical Sciences, vol. 6. World Scientific Publishing, Singapore (2007)

    MATH  Google Scholar 

  8. Gutzmer, T., Iske, A.: Detection of discontinuities in scattered data approximation. Numer. Algorithms 16, 155–170 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order essentially non-oscillatory schemes, III. J. Comput. Phys. 71, 231–303 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hietel, D., Steiner, K., Struckmeier, J.: A finite-volume particle method for compressible flows. Math. Mod. Meth. Appl. Sci. 10(9), 1363–1382 (2000)

    Article  MathSciNet  Google Scholar 

  11. Iske, A.: On the approximation order and numerical stability of local Lagrange interpolation by polyharmonic splines. In: Haussmann, W., Jetter, K., Reimer, M., Stöckler, J. (eds.) Modern Developments in Multivariate Approximation. International Series of Numerical Mathematics, vol. 145, pp. 153–165. Birkhäuser, Basel (2003)

    Google Scholar 

  12. Iske, A.: Multiresolution Methods in Scattered Data Modelling. Lecture Notes in Computational Science and Engineering, vol. 37. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  13. Iske, A.: Polyharmonic spline reconstruction in adaptive particle flow simulation. In: Iske, A., Levesley, J. (eds.) Algorithms for Approximation, pp. 83–102. Springer, Berlin (2007)

    Chapter  Google Scholar 

  14. Junk, M.: Do finite volume methods need a mesh? In: Griebel, M., Schweitzer, M.A. (eds.) Meshfree Methods for Partial Differential Equations, pp. 223–238. Springer (2003)

    Google Scholar 

  15. Käser, M., Iske, A.: ADER schemes on adaptive triangular meshes for scalar conservation laws. Journal of Computational Physics 205(2), 486–508 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. LeVeque, R.L.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  17. Liu, X., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Narcowich, F.J., Ward, J.D.: Norm estimates for the inverses of a general class of scattered-data radial-function interpolation matrices. J. Approx. Theory 69, 84–109 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Preparata, F.P., Shamos, M.I.: Computational Geometry. Springer, New York (1988)

    Google Scholar 

  20. Schaback, R.: Stability of radial basis function interpolants. In: Chui, C.K., Schumaker, L.L., Stöckler, J. (eds.) Approximation Theory X: Wavelets, Splines, and Applications, pp. 433–440. Vanderbilt Univ. Press, Nashville (2002)

    Google Scholar 

  21. Schaback, R.: Error estimates and condition numbers for radial basis function interpolation. Advances in Comp. Math. 3, 251–264 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Titarev, V.A., Toro, E.F.: ADER: arbitrary high order Godunov approach. J. Sci. Comput. 17, 609–618 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Toro, E.F., Millington, R.C., Nejad, L.A.M.: Towards very high order Godunov schemes. In: Godunov Methods (Oxford, 1999), pp. 907–940. Kluwer/Plenum, New York (2001)

    Chapter  Google Scholar 

  24. Wendland, H.: Scattered Data Approximation. Cambridge Univ. Press, Cambridge (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Iske .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Iske, A. (2013). On the Construction of Kernel-Based Adaptive Particle Methods in Numerical Flow Simulation. In: Ansorge, R., Bijl, H., Meister, A., Sonar, T. (eds) Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33221-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33221-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33220-3

  • Online ISBN: 978-3-642-33221-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics