Skip to main content

No Free Lunch Theorems: Limitations and Perspectives of Metaheuristics

  • Chapter
  • First Online:
Theory and Principled Methods for the Design of Metaheuristics

Part of the book series: Natural Computing Series ((NCS))

Abstract

The No Free Lunch (NFL) theorems for search and optimization are reviewed and their implications for the design of metaheuristics are discussed. The theorems state that any two search or optimization algorithms are equivalent when their performance is averaged across all possible problems and even over subsets of problems fulfilling certain constraints. The NFL results show that if there is no assumption regarding the relation between visited and unseen search points, efficient search and optimization is impossible. There is no well-performing universal metaheuristic, but the heuristics must be tailored to the problem class at hand using prior knowledge. In practice, it is not likely that the preconditions of the NFL theorems are fulfilled for a problem class and thus differences between algorithms exist. Therefore, tailored algorithms can exploit structure underlying the optimization problem. Given full knowledge about the problem class, it is, in theory, possible to construct an optimal algorithm.

Thus not only our reason fails us in the discovery of the ultimate connexion of causes and effects, but even after experience has informed us of their constant conjunction, it is impossible for us to satisfy ourselves by our reason, why we should extend that experience beyond those particular instances, which have fallen under our observation. We suppose, but are never able to prove, that there must be a resemblance betwixt those objects, of which we have had experience, and those which lie beyond the reach of our discovery. (David Hume, 1739 [10, 14])

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In general, this cannot be done in the theorems because \(\sum _{f\in F}\delta (k,\sum _{a\prime\in A}p_{a}(a\prime)c(Y (f,m,a\prime)))\neq \sum _{f\in F}\sum _{a\prime\in A}p_{a}(a\prime)\delta (k,c(Y (f,m,a\prime)))\).

  2. 2.

    It is also possible to map the optimization to an infinite horizon problem with appropriate absorbing states.

  3. 3.

    In a S-MDP no state is ever revisited. Hence, for any policy, the transition probability graph is acyclic and thus value iteration finds the optimal policy after at most m steps, where each step needs \(O{(\vert \mathcal{A}\vert \vert \mathcal{S}\vert )}^{2}\) computations (see [3, Sect. 2.2.2] or [2]).

References

  1. A. Auger, O. Teytaud, Continuous lunches are free plus the design of optimal optimization algorithms. Algorithmica 57(1), 121–146 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. D.P. Bertsekas, Dynamic programming and optimal control. Athena Sci. 2 (2007)

    Google Scholar 

  3. D.P. Bertsekas, J.N. Tsitsiklis, Neuro-dynamic programming. Athena Sci. (1996)

    Google Scholar 

  4. O. Bousquet, S. Boucheron, G. Lugosi, Introduction to statistical learning theory, in Advanced Lectures in Machine Learning, ed. by O. Bousquet, U. von Luxburg, G. Rätsch. LNAI, vol. 3176 (Springer, Berlin Heidelberg, 2004), pp. 169–207

    Google Scholar 

  5. D.W. Corne, J.D. Knowles, No free lunch and free leftovers theorems for multiobjective optimisation problems, in Evolutionary Multi-Criterion Optimization (EMO 2003), ed. by C.M. Fonseca, P.J. Fleming, E. Zitzler, L. Thiele, K. Deb. LNCS, vol. 2632 (Springer, Berlin Heidelberg, 2003), pp. 327–341

    Google Scholar 

  6. S. Droste, T. Jansen, I. Wegener, Optimization with randomized search heuristics – the (A)NFL theorem, realistic scenarios, and difficult functions. Theor. Comput. Sci. 287(1), 131–144 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. T.M. English, Evaluation of evolutionary and genetic optimizers: no free lunch, in Proceedings of the Fifth Annual Conference on Evolutionary Programming (EP V), San Diego, ed. by L.J. Fogel, P.J. Angeline, T. Bäck (MIT, 1996), pp. 163–169

    Google Scholar 

  8. T.M. English, Optimization is easy and learning is hard in the typical function, in Proceedings of the 2000 Congress on Evolutionary Computation (CEC 2000), San Diego, ed. by A. Zalzala, C. Fonseca, J.H. Kim, A. Smith (IEEE, 2000), pp. 924–931

    Google Scholar 

  9. T. English, On the structure of sequential search: beyond “No free lunch”, in Evolutionary Computation in Combinatorial Optimization (EvoCOP 2004), ed. by J. Gottlieb, G.R. Raidl. LNCS, vol. 3004 (Springer, Berlin Heidelberg, 2004), pp. 95–103

    Google Scholar 

  10. C. Giraud-Carrier, F. Provost, Toward a justification of meta-learning: is the no free lunch theorem a show-stopper? in Proceedings of the ICML-2005 Workshop on Meta-learning, Bonn, 2005

    Google Scholar 

  11. N. Hansen: Invariance, self-adaptation and correlated mutations and evolution strategies, in Parallel Problem Solving from Nature (PPSN VI), ed. by M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J.J.M. Guervós, H.P. Schwefel. LNCS, vol. 1917 (Springer, Berlin Heidelberg, 2000), pp. 355–364

    Google Scholar 

  12. N. Hansen, Adaptive encoding: how to render search coordinate system invariant, in Parallel Problem Solving from Nature (PPSN X), ed. by G. Rudolph, T. Jansen, S.M. Lucas, C. Poloni, N. Beume. LNCS, vol. 5199 (Springer, Berlin Heidelberg, 2008), pp. 205–214

    Google Scholar 

  13. N. Hansen, A. Ostermeier, Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2001)

    Article  Google Scholar 

  14. D. Hume, A Treatise of Human Nature, Chap. Sect. vi. Of the Inference from the impression to the idea. Web edition published by eBooks@Adelaide, 2006 (1739)

    Google Scholar 

  15. C. Igel, Recent results on no-free-lunch for optimization, in Theory of Evolutionary Algorithms, no. 04081, ed. by H. Beyer, T. Jansen, C. Reeves, M.D. Vose, in Dagstuhl Seminar Proceedings, Abstract Collection, Schloss Dagstuhl (Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), 2004)

    Google Scholar 

  16. C. Igel, P. Stagge, Graph isomorphisms effect structure optimization of neural networks, in International Joint Conference on Neural Networks (IJCNN 2002), Honolulu (IEEE, 2002), pp. 142–147

    Google Scholar 

  17. C. Igel, M. Toussaint, Neutrality and self-adaptation. Nat. Comput. 2(2), 117–132 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. C. Igel, M. Toussaint, On classes of functions for which no free lunch results hold. Inf. Process. Lett. 86(6), 317–321 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. C. Igel, M. Toussaint, Recent results on no-free-lunch theorems for optimization. arXiv preprint cs.NE/0303032 (2003), http://arxiv.org/abs/cs.NE/0303032

    Google Scholar 

  20. C. Igel, M. Toussaint, A no-free-lunch theorem for non-uniform distributions of target functions. J. Math. Model. Algorithms 3(4), 313–322 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Köppen, D.H. Wolpert, W.G. Macready, Remarks on a recent paper on the “no free lunch” theorems. IEEE Trans. Evol. Comput. 5(3), 295–296 (1995)

    Article  Google Scholar 

  22. R. Motwani, P. Raghavan, Randomized Algorithms (Cambridge University Press, Cambridge, 1995)

    Book  MATH  Google Scholar 

  23. J. Niehaus, C. Igel, W. Banzhaf, Reducing the number of fitness evaluations in graph genetic programming using a canonical graph indexed database. Evol. Comput. 15(2), 199–221 (2007)

    Article  Google Scholar 

  24. N.J. Radcliffe, P.D. Surry, Fundamental limitations on search algorithms: evolutionary computing in perspective, in Computer Science Today: Recent Trends and Development, ed. by J. van Leeuwen. LNCS, vol. 1000 (Springer, Berlin Heidelberg, 1995), pp. 275–291

    Google Scholar 

  25. G.J.E. Rawlins, Introduction, in Foundations of Genetic Algorithms (FOGA), ed. by G.J.E. Rawlins (Morgan Kaufmann, San Mateo, 1991), pp. 1–10

    Google Scholar 

  26. J.E. Rowe, M.D. Vose, A.H. Wright, Reinterpreting no free lunch. Evol. Comput. 17(1), 117–129 (2009)

    Article  Google Scholar 

  27. C. Schumacher, Fundamental limitations of search. Ph.D. Thesis, University of Tennessee, 2000

    Google Scholar 

  28. C. Schumacher, M.D. Vose, L.D. Whitley, The no free lunch and description length, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), San Francisco, ed. by L. Spector, E. Goodman, A. Wu, W. Langdon, H.M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. Garzon, E. Burke (Morgan Kaufmann, 2001), pp. 565–570

    Google Scholar 

  29. M.J. Streeter, Two broad classes of functions for which a no free lunch result does not hold, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2003), Chicago, ed. by E. Cantú-Paz, J.A. Foster, K. Deb, D. Davis, R. Roy, U.M. O’Reilly, H.G. Beyer, R. Standish, G. Kendall, S. Wilson, M. Harman, J. Wegener, D. Dasgupta, M.A. Potter, A.C. Schultz, K. Dowsland, N. Jonoska, J. Miller. LNCS, vol. 2724 (Springer, Berlin Heidelberg, 2003), pp. 1418–1430

    Google Scholar 

  30. T. Suttorp, N. Hansen, C. Igel, Efficient covariance matrix update for variable metric evolution strategies. Mach. Learn. 75(2), 167–197 (2009). doi:10.1007/s10994-009-5102-1

    Article  Google Scholar 

  31. D. Whitley, A free lunch proof for Gray versus binary encodings, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 1999), Orlando, ed. by W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela, R.E. Smith, vol. 1 (Morgan Kaufmann, 1999), pp. 726–733

    Google Scholar 

  32. D. Whitley, J. Rowe, Focused no free lunch theorems, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2008), Atlanta, ed. by M. Keijzer, et al. (ACM, 2008), pp. 811–818

    Google Scholar 

  33. D. Whitley, J.P. Watson, Complexity theory and the no free lunch theorem, in Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, ed. by E.K. Burke, G. Kendall, Chap. 11 (Springer, New York, 2005), pp. 317–339

  34. D.H. Wolpert, The lack of a priori distinctions between learning algorithms. Neural Comput. 8(7), 1341–1390 (1996)

    Article  Google Scholar 

  35. D.H. Wolpert, W.G. Macready, No free lunch theorems for search. Technical Report SFI-TR-05-010, Santa Fe Institute, Santa Fe (1995)

    Google Scholar 

  36. D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  37. D.H. Wolpert, W.G. Macready, Coevolutionary free lunches. IEEE Trans. Evol. Comput. 9(6), 721–735 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

Parts of this text are based on former joint work with Marc Toussaint. The author acknowledges support from the German Federal Ministry of Education and Research within the National Network Computational Neuroscience – Bernstein Fokus: “Learning behavioral models: From human experiment to technical assistance”, grant FKZ 01GQ0951.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Igel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Igel, C. (2014). No Free Lunch Theorems: Limitations and Perspectives of Metaheuristics. In: Borenstein, Y., Moraglio, A. (eds) Theory and Principled Methods for the Design of Metaheuristics. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33206-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33206-7_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33205-0

  • Online ISBN: 978-3-642-33206-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics