Skip to main content

First-Principles Simulations of Electronic Transport in Dangling-Bond Wires

  • Conference paper
  • First Online:
Architecture and Design of Molecule Logic Gates and Atom Circuits

Part of the book series: Advances in Atom and Single Molecule Machines ((AASMM))

  • 1109 Accesses

Abstract

It has recently become possible to calculate at an ab initio level electronic transport in atomic and molecular systems connected to semi-infinite electrodes under an applied bias. In this chapter, we show how electronic structure calculations based on the density functional theory (DFT), followed by the use of nonequilibrium Green’s functions (NEGF), allow one to simulate the electronic transport in various systems. This method is apply to the problem of electronic transport in dangling-bond wires built on the Si(100) surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ruben, M., Landa, A., Lörtscher, E., Riel, H., Mayor, M., Görls, H., Weber, H.B., Arnold, A., Evers, F.: Small 4(12), 2229 (2008)

    Article  Google Scholar 

  2. Martin, C.A., Smit, R.H.M., van Egmond, R., van der Zant, H.S.J., van Ruitenbeek, J.M.: Rev. Scientif. Instrum. 82(5), 053907 (2011)

    Article  ADS  Google Scholar 

  3. Schull, G., Frederiksen, T., Arnau, A., Sanchez-Portal, D., Berndt, R.: Nature Nanotechnol. 6(12), 23 (2011)

    Article  ADS  Google Scholar 

  4. Pascual, J.I.,  Mendez, J., Gomez-Herrero, J., Baro, A.M., Garcia, N., Binh, V.: Phys. Rev. Lett. 71, 1852 (1993)

    Article  ADS  Google Scholar 

  5. Agrait, N., Untiedt, C., Rubio-Bollinger, G., Vieira, S.: Phys. Rev. Lett. 88, 216803 (2002)

    Article  ADS  Google Scholar 

  6. Charlier, J.C., Blase, X., Roche, S.: Rev. Mod. Phys. 79, 677 (2007)

    Article  ADS  Google Scholar 

  7. Aviram, A., Ratner, M.A.: Chem. Phys. Lett. 29, 277 (1974)

    Article  ADS  Google Scholar 

  8. Joachim, C., Gimzewski, J.K., Aviram, A.: Nature 408, 541 (2000)

    Article  ADS  Google Scholar 

  9. Muller, D.A., Sorsch, T., Moccio, S., Baumann, F.H., Evans-Lutterodt, K., Timp, G.: Nature 399, 758 (1999)

    Article  ADS  Google Scholar 

  10. Meindl, J.D., Chen, Q., Davis, J.A.: Science 293, 2044 (2001)

    Article  ADS  Google Scholar 

  11. Hohenberg, P., Kohn, W.: Phys. Rev. B 136, 864 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  12. Kohn, W., Sham, L.J.: Phys. Rev. A 140, 1133 (1965)

    MathSciNet  ADS  Google Scholar 

  13. Schmitteckert, P., Evers, F.: Phys. Rev. Lett. 100, 086401 (2008)

    Article  ADS  Google Scholar 

  14. Mera, H., Niquet, Y.M.: Phys. Rev. Lett. 105, 216408 (2010)

    Article  ADS  Google Scholar 

  15. Bergfield, J.P., Liu, Z.F., Burke, K., Stafford, C.A.: Phys. Rev. Lett. 108, 066801 (2012)

    Article  ADS  Google Scholar 

  16. Lang, N.D.: Phys. Rev. Lett. 55, 230 (1985)

    Article  ADS  Google Scholar 

  17. Economou, E.N.: Green’s Functions in Quantum Physics. Springer, Berlin (2005)

    Google Scholar 

  18. Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  19. Brandbyge, M., Mozos, J.L., Ordejón, P., Taylor, J., Stokbro, K.: Phys. Rev. B 65, 165401 (2002)

    Article  ADS  Google Scholar 

  20. Rocha, A.R., García-Suárez, V.M., Bailey, S., Lambert, C., Ferrer, J., Sanvito, S.: Phys. Rev. B 73, 085414 (2006)

    Article  ADS  Google Scholar 

  21. Koch, W., Holthausen, M.C.: A Chemist’s Guide to Density Functional Theory. Wiley-VCH Verlag GmbH, Weinheim (2001)

    Book  Google Scholar 

  22. Artacho, E., Sánchez-Portal, D., Ordejón, P., García, A., Soler, J.M.: Phys. Stat. Sol. (B) 215, 809 (1999)

    Google Scholar 

  23. Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D.: J. Phys.: Condens. Matter 14, 2745 (2002)

    Article  ADS  Google Scholar 

  24. Artacho, E., Anglada, E., Diéguez, O., Gale, J.D., García, A., Junquera, J., Martin, R.M., Ordejón, P., Pruneda, J.M., Sánchez-Portal, D., Soler, J.M.: J. Phys.: Condens. Matter 20, 064208 (2008)

    Article  ADS  Google Scholar 

  25. Kresse, G., Furthmüller, J.: Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  26. Cuevas, J.C., Levy Yeyati, A., Martín-Rodero, A.: Phys. Rev. Lett. 80, 1066 (1998)

    Article  ADS  Google Scholar 

  27. Martin, T., Landauer, R.: Phys. Rev. B 45, 1742 (1992)

    Article  ADS  Google Scholar 

  28. Brandbyge, M., Sørensen, M.R., Jacobsen, K.W.: Phys. Rev. B 56, 14956 (1997)

    Article  ADS  Google Scholar 

  29. Shen, T.C., Wang, C., Abeln, G.C., Tucker, J.R., Lyding, J.W., Avouris, P., Walkup, R.E.: Science 268, 1590 (1995)

    Article  ADS  Google Scholar 

  30. Hosaka, S., Hosoki, S., Hasegawa, T., Koyanagi, H., Shintani, T., Miyamoto, M.: J. Vac. Sci. Technol. B 13, 2813 (1995)

    Article  Google Scholar 

  31. Hitosugi, T., Heike, S., Onogi, T., Hashizume, T., Watanabe, S., Li, Z.Q., Ohno, K., Kawazoe, Y., Hasegawa, T., Kitazawa, K.: Phys. Rev. Lett. 82, 4034 (1999)

    Article  ADS  Google Scholar 

  32. Soukiassian, L., Mayne, A.J., Carbone, M., Dujardin, G.: Surf. Sci. 528, 121 (2003)

    Article  ADS  Google Scholar 

  33. Hallam, T., Reusch, T.C.G., Oberbeck, L., Curson, N.J., Simmons, M.Y.: J. Appl. Phys. 101, 034305 (2007)

    Article  ADS  Google Scholar 

  34. Haider, M.B., Pitters, J.L., DiLabio, G.A., Livadaru, L., Mutus, J.Y., Wolkow, R.A.: Phys. Rev. Lett. 102, 046805 (2009)

    Article  ADS  Google Scholar 

  35. Pitters, J.L., Livadaru, L., Haider, M.B., Wolkow, R.A.: J. Chem. Phys. 134, 064712 (2011)

    Article  ADS  Google Scholar 

  36. Doumergue, P., Pizzagalli, L., Joachim, C., Altibelli, A., Baratoff, A.: Phys. Rev. B 59, 15910 (1999)

    Article  ADS  Google Scholar 

  37. Kawai, H., Yeo, Y.K., Saeys, M., Joachim, C.: Phys. Rev. B 81, 195316 (2010)

    Article  ADS  Google Scholar 

  38. Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  39. Troullier, N., Martins, J.L.: Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  40. Watanabe, S., Ono, Y.A., Hashizume, T., Wada, Y.: Phys. Rev. B 54, R17308 (1996)

    Article  ADS  Google Scholar 

  41. Watanabe, S., Ono, Y.A., Hashizume, T., Wada, Y.: Surf. Sci. 386, 340 (1997)

    Article  ADS  Google Scholar 

  42. Cho, J.H., Kleinman, L.: Phys. Rev. B 66, 235405 (2002)

    Article  ADS  Google Scholar 

  43. Bird, C.F., Bowler, D.R.: Surf. Sci. 531, L351 (2003)

    Article  ADS  Google Scholar 

  44. Çakmak, M., Srivastava, G.P.: Surf. Sci. 532–535, 556 (2003)

    Article  Google Scholar 

  45. Lee, J.Y., Choi, J.H., Cho, J.H.: Phys. Rev. B 78, 081303 (2008)

    Article  ADS  Google Scholar 

  46. Lee, J.Y., Cho, J.H., Zhang, Z.: Phys. Rev. B 80, 155329 (2009)

    Article  ADS  Google Scholar 

  47. Lee, J.H., Cho, J.H.: Surf. Sci. 605, L13 (2011)

    Article  ADS  Google Scholar 

  48. Robles, R., Kepenekian, M., Monturet, S., Joachim, C., Lorente, N.: J. Phys.: Condens. Matter 24, 445004 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank the European Union Integrated Project AtMol for financial support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kepenekian, M., Robles, R., Lorente, N. (2013). First-Principles Simulations of Electronic Transport in Dangling-Bond Wires. In: Lorente, N., Joachim, C. (eds) Architecture and Design of Molecule Logic Gates and Atom Circuits. Advances in Atom and Single Molecule Machines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33137-4_11

Download citation

Publish with us

Policies and ethics