Skip to main content

Induced Near-Hydrothermal Alteration Studies on Nuclear Waste Glass and Natural Analogue (Obsidian) for Performance Assessment in Geological Repository

  • Chapter
  • First Online:
On a Sustainable Future of the Earth's Natural Resources

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

  • 1653 Accesses

Abstract

This chapter presents the results of experiments on understanding the alteration mechanism, rate of alteration and mineral paragenesis of the nuclear waste and natural glass under induced and near hydrothermal conditions. For long-term performance assessment of nuclear waste and natural (obsidian) glasses, solution chemistry of leachates and chemico-mineralogical attributes of the glass surfaces and neo-formed minerals produced by alteration were examined for their retention property. To assess the performances of these glasses in the geological repository, the results were extrapolated for 50 years. It has been found that depending upon the glass composition, solution conditions and the rate of progress of reaction the minerals namely, chalcedony and Ca-beidellite, analcime, smectite, kaolinite, gibbsite, and other mineral phases are formed. The experimental and extrapolated data allowed to draw a paragenetic diagram, that indicates the development of crystalline phases such as smectite, hydrotalcite, saponite, kaolinite over the glass surface after alteration. The agreement between the simulated and the experimental compositions of the glasses is found to be fair, especially for the elements which are soluble and also released congruently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelouas A, Crovisier JL, Lutze W, Grambow B, Dran JC, Miiller R (1997) Surface layers on a borosilicate nuclear waste glass corroded in MgCl2 solution. J Nucl Mater 240:100–111

    Article  Google Scholar 

  • Abrajano TA, Bates JK, Mazer JJ (1989) Aqueous corrosion of natural and nuclear waste glasses: II Mechanisms of vapour hydration of nuclear waste glasses. J Non-Cryst Solids 108:269–288

    Article  Google Scholar 

  • Crovisier JL, Eberhart JP, Thomassin JH, Juteau T, Touray JC, Ehret G (1982) Interaction “eau de mer-verre basaltique” ~ 50~ Formation d’un hydroxycarbonate et de produits silicatrs amorphes (A1, Mg) et mal cristallises (A1, Fe, Mg). Etude en microscopic elctronique et par spectrometrie des photoelectrons (E.S.C.A.), vol 294. C.R, Academic Science, Paris, pp 989–994

    Google Scholar 

  • Crovisier JL, Vernaz E, Dussossoy JL (1992) Early phyllosilicates formed by alteration of R7T7 glass in water at 250 °C. Appl Clay Sci 7:45

    Article  Google Scholar 

  • Curti E, Godon N, Vernaz EY (1993) Enhancement of the glass corrosion in the presence of clay minerals: testing experimental results with an integrated glass dissolution model. In: Interrante CG, Pabalan R (eds) Scientific basis for nuclear waste management XVI, vol 294. Materials Research Society Symposium, Cambridge, pp 163–170

    Google Scholar 

  • Dana JD (2002) The manual of mineral science, 22nd edn. Wiley, New York, pp 556–561

    Google Scholar 

  • Deer WA, Howie RA (1966) An introduction to the rock-forming minerals. Longman Group, London, p 528

    Google Scholar 

  • Gin S, Ribet I, Couillard M (2001) Role and properties of the gel formed during nuclear glass alteration: importance of gel formation conditions. J Nucl Mater 298:1–10

    Article  Google Scholar 

  • Godon N (1988) Effet des mate´riaux d’environnement sur l’alte´ration du verre nucle´aire R7T7 – influence des argiles, Unpublished Ph.D. thesis, University d’Orle´ans, France

    Google Scholar 

  • Grambow B, Muller RJ (2001) First order dissolution rate of surface layer in glass performance assessment law. J Nucl Mater 298:112

    Article  Google Scholar 

  • Guy C, Schott J (1989) Multisite surface reaction versus transport control during the hydrolysis of a complex oxide. Chem Geol 78:181–204

    Article  Google Scholar 

  • Harder H (1972) The role of magnesium in the formation of smectite minerals. Chem Geol 10:31–39

    Article  Google Scholar 

  • Helgeson HC (1968) Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions-I. Thermodynamic relations. Geochim Cosmochim Acta 32:853–857

    Article  Google Scholar 

  • Hemley RJ, Mao HK, Bell PM, Mysen BO (1986) Raman spectroscopy of SiO2 glass at high pressure. Phys Rev Lett 57:747–750

    Article  Google Scholar 

  • Inagaki Y, Shinkai A, Idemisto K, Arima T, Yoshikawa H, Yui M (2006) Aqueous alteration of Japaanese stimulated waste glass P0798: effects of alteration – phase formation on alteration rate and cesium retention. J Nucl Mater 354:171–184

    Article  Google Scholar 

  • Kaushik CP, Mishra RK, Sengupta P, Kumar A, Das D, Kale GB, Raj K (2006) Barium borosilicate glass – a potential matrix for immobilization of sulfate bearing high-level radioactive liquid waste. J Nucl Mater 358:129–138

    Article  Google Scholar 

  • Le Maitre RW (1976) A proposal by the IUGS subcommission on the systematics of igneous rocks for a chemical classification of volcanic rocks based on the total alkali silica (TAS) diagram. J Petrol 17:589–637

    Article  Google Scholar 

  • Lemmens K (2001) The effect of clay on the dissolution of nuclear waste glass. J Nucl Mater 298:11–18

    Article  Google Scholar 

  • Raj K, Prasad KK, Bansal NK (2006) Nuclear engineering and design radioactive waste management practices in India. Nucl Eng Des 236:914–930

    Article  Google Scholar 

  • Rother A, Lutze W, Shubert-Bischoff P (1992) Characterization of lanthanoid phases formed upon glass dissolution in salt solutions. In: Sombret CG (ed) Scientific basis for nuclear waste management, vol 257. Materials Research Society Symposium, Cambridge, pp 57–64

    Google Scholar 

  • Strachan DM, Croak TL (2000) Compositional effects on long-term dissolution of borosilicate glass. J Non-Cryst Solids 272:22–33

    Article  Google Scholar 

  • Thomassin JH, Touray JC (1982) L'hydrotalcite, un hydroxycarbonate transitoire prcocement form lors de Finteraction verre basaltique-eau de mer. B Mineral 105:312–319

    Google Scholar 

  • Trocellier P (2001) Chemical durability of high level nuclear base forms. Ann Chim Sci Mat 26:113–130

    Article  Google Scholar 

  • Vernaz E, Gin S, Jegou C, Ribet IJ (2001) Present understanding of R7T7 glass altera-kinetics and their impact on long-term behavior modeling. Nucl Mater 298:27

    Article  Google Scholar 

  • Weaver CE, Pollard LD (1973) The chemistry of clay minerals. Elsevier, London/New York/Amsterdam, p 213

    Google Scholar 

  • Wolery TJ (1992) EQ3/6, a software package or geochemical modeling of aqueous systems, package overview and installation guide (version 7.0). Lawrence Livermore National Laboratory

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Shrivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rani, N., Shrivastava, J.P., Bajpai, R.K. (2013). Induced Near-Hydrothermal Alteration Studies on Nuclear Waste Glass and Natural Analogue (Obsidian) for Performance Assessment in Geological Repository. In: Ramkumar, M. (eds) On a Sustainable Future of the Earth's Natural Resources. Springer Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32917-3_16

Download citation

Publish with us

Policies and ethics