Skip to main content

Ultrastructural Plasticity of Cyanobacteria During the Enzymatic Induction of L-Transformation

  • Chapter
  • First Online:
Ultrastructural Plasticity of Cyanobacteria
  • 707 Accesses

Abstract

In this chapter, the results of electron microscopy investigation of the dynamics of changes in cyanobacterial cells during enzymatic induction of their L-transformation in model systems in vitro are presented. These data are evident of the correspondence between metabolic versatility and ultrastructural complexity of different cyanobacterial species and their ability to exist as cell wall-defective forms. The unique data on the Chlorogloeopsis fritschii capability of L-transformation during cultivation in the presence of lysozyme are emphasized as an important contribution to current understanding of cyanobacterial physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agafodorova MN, Gorelova OA, Baulina OI, Semenova LR, Korzhenevskaya TG, Butenko RG, Gusev MV (1982) The study of the initial stages of the cyanobacteria cells and spheroplasts’ penetration into the isolated protoplasts of tobacco, induced by polyethyleneglycol (in Russian). Izvestiya Akademii Nauk SSSR Seriya biologicheskaya 4:510–516

    Google Scholar 

  • Allan EJ (1991) Induction and cultivation of a stable L-form of Bacillus subtilis. J Appl Microbiol 70(4):339–343. doi:10.1111/j.1365-2672.1991.tb02946.x

    Article  CAS  Google Scholar 

  • Allan EJ, Hoischen C, Gumpert J (2009) Chapter 1 Bacterial L-forms. Adv Appl Microbiol 68:1–39. doi:10.1016/S0065-2164(09)01201-5

    Article  PubMed  CAS  Google Scholar 

  • Bateman K, Rasmussen U, Bergman B (1999) A putative arabinogalactan protein is secreted by prokaryotic cyanobacteria In: Abstracts of 9th international congress of molecular plant-microbe interactions, Amsterdam, The Netherlands, 25–30 July 1999

    Google Scholar 

  • Baulina OI, Gorelova OA, Agafodorova MN, Semenova LR (1984) Electron microscopic study of cyanobacteria after treatments for obtaining of the protoplasts (in Russian). In: Abstracts of the All-Union conference on the cytology of microorganisms, Institute of Biochemistry and Physiology of Microorganisms, Pushchino, Russia, 21–23 November 1984

    Google Scholar 

  • Baulina OI, Korzhenevskaya TG, Nikitina KA, Gusev MV (1975) Electron microscopy and biochemical study of the spheroplasts of blue-green alga Anabaena variabilis (in Russian). Microbiologiya 44(1):132–135

    CAS  Google Scholar 

  • Baulina OI, Semenova LR, Mineeva LA, Gusev MV (1978) Characteristics of the cellular ultrastructural organization of the chemoheterotrophic blue-green alga, Chlorogloea fritschii (in Russian). Mikrobiologiya 47(5):919–923

    CAS  Google Scholar 

  • Berliner MD, Neely-Fisher D, Rosen B, Fisher R (1987) Spheroplast induction in Anabaena variabilis Kütz and A. azollae stras. Protoplasma 139(1):36–40. doi:10.1007/BF01417533

    Article  Google Scholar 

  • Beveridge TJ (1999) Structures of gram-negative cell walls and their derived membrane vesicles. J Bacteriol 181(16):4725–4733

    PubMed  CAS  Google Scholar 

  • Butler RD, Allsopp A (1972) Ultrastructural investigations in the Stigonemataceae (Cyanophyta). Arch Microbiol 82(4):283–299. doi:10.1007/BF00424933

    Google Scholar 

  • Cosner JC, Troxler RF (1978) Phycobiliprotein synthesis in protoplasts of the unicellular cyanophyte, Anacystis nidulans. Biochim Biophys Acta Nucleic Acids Protein Synth 519(2):474–488

    Article  CAS  Google Scholar 

  • Dell’Era S, Buchrieser C, Couvé E, Schnell B, Briers Y, Schuppler M, Loessner MJ (2009) Listeria monocytogenes L-forms respond to cell wall deficiency by modifying gene expression and the mode of division. Mol Microbiol 73(2):306–322. doi:10.1111/j.1365-2958.2009.06774.x

    Article  PubMed  Google Scholar 

  • Domingue GJ Sr, Woody HB (1997) Bacterial persistence and expression of disease. Clin Microbiol Rev 10(2):320–344

    PubMed  Google Scholar 

  • Dominguez-Cuevas P, Mercier R, Errington J (2011) Emergence and proliferation of B. subtilis L-forms In: Abstracts of the 4th congress of European microbiologists FEMS 2011, Geneva, Switzerland, 26–30 June 2011

    Google Scholar 

  • Dominque GJ (1995) Electron dense cytoplasmic particles and chronic infection—a bacterial pleomorphy hypothesis. Endocytobiosis Cell Res 11:19–40

    Google Scholar 

  • Fedorov VD, Karaush GA (1974) The study of the physiological activity of mono- and mixed cultures of some blue-green algae. (in Russian) In: Fedorov VD, Telitchenko MM (eds) Actual problems of blue-green algae. Nauka, Moscow

    Google Scholar 

  • Gabriel M (1977) Ultrastructure of cells and spheroplasts of the blue-green alga, Anacystis nidulans. Folia Microbiol 22(6):447–448

    Google Scholar 

  • Gamaleya NF (1894) Heterotrophic bacteria under the influence of lithium salts (in Russian). Vrach 20:541–544

    Google Scholar 

  • Gorelova OA, Baulina OI (2000) Ultrastructure of the cell surface of heteromorphic Nostoc muscorum CALU 304 cells in mixed culture with rauwolfia tissue (in Russian). In: Proceedings of the conference on problems of ecology and physiology of microorganisms, Lomonosov Moscow State University, Moscow, 21 Dec 1999

    Google Scholar 

  • Gorelova OA, Baulina OI (2009) Ultrastructure of cyanobacterium Nostoc sp. f. Blasia cell forms in persisting populations. Microbiology (Transl) 78(5):609–617. doi:10.1134/S0026261709050130

    Article  CAS  Google Scholar 

  • Gromov B (1976) Ultrastructure of blue-green algae (in Russian). Nauka, Leningrad

    Google Scholar 

  • Gromov BV, Mamkaeva KA (1976) Connection of thylakoids with plasmalemma in cyanobacteria of genus Synechococcus. Microbiology (Transl) 45:790–791

    Google Scholar 

  • Gromov BV, Yermilova EV, Mamkayeva KA (1983) Intermembraneous contacts in the cyanobacterium Chlorogloea fritschii (in Russian). Mikrobiologiya 52 (6):1017–1019

    Google Scholar 

  • Gusev MV, Baulina OI, Gorelova OA, Lobakova ES, Korzhenevskaya TG (2002) Artificial cyanobacterium-plant symbioses. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Gusev MV, Baulina OI, Semenova LR, Mineeva LA (1982) The fine structure of lyzozyme-induced and spontaneous forms with a defective cell wall in the cyanobacterium Chlorogloea fritschii (in Russian). Mikrobiologiya 51(4):622–627

    Google Scholar 

  • Gusev MV, Baulina OI, Semenova LR, Mineeva LA, Kats LN (1983) Electron-microscopic study of L-like colonies of the cyanobacterium Chlorogloea fritschii. Microbiology (Transl) 52(4):495–499

    Google Scholar 

  • Gusev MV, Semenova LR, Levina GA, Mineeva LA (1981) Study of conditions for L-transformation in cyanobacteria. Microbiology (Transl) 50(1):84–89

    Google Scholar 

  • Hoischen C, Gura K, Luge C, Gumpert J (1997) Lipid and fatty acid composition of cytoplasmic membranes from Streptomyces hygroscopicus and its stable protoplast-type L-form. J Bacteriol 179(11):3430–3436

    PubMed  CAS  Google Scholar 

  • Ivanova EH, Michailova L, Stefanova Z, Neychev H, Radoevska S, Gumpert J (1997) Effect of Escherichia coli L-form cytoplasmic membranes on the interaction between macrophages and Lewis lung carcinoma cells: scanning electron microscopy. FEMS Immunol Med Microbiol 17(1):27–36. doi:10.1111/j.1574-695X.1997.tb00993.x

    Article  PubMed  CAS  Google Scholar 

  • Joseleau-Petit D, Liébart JC, Ayala JA, D’Ari R (2007) Unstable Escherichia coli L forms revisited: growth requires peptidoglycan synthesis. J Bacteriol 189(18):6512–6520. doi:10.1128/JB.00273-07

    Article  PubMed  CAS  Google Scholar 

  • Kats LN (1980) Submicroscopic structure of microorganisms with defective cell wall. (in Russian) In: Successes of microbiology, vol 15. Nauka, Moscow

    Google Scholar 

  • Lamont HC (1969) Shear-oriented microfibrils in the mucilaginous investments of two motile oscillatoriacean blue-green algae. J Bacteriol 97(1):350–361

    PubMed  CAS  Google Scholar 

  • Leaver M, Dominguez-Cuevas P, Coxhead JM, Daniel RA, Errington J (2009) Life without a wall or division machine in Bacillus subtilis. Nature 457(7231):849–853. doi:10.1038/nature07742

    Article  PubMed  CAS  Google Scholar 

  • Liberton M, Pakrasi H (2008) Membrane systems in cyanobacteria. In: Herrero A, Flores E (eds) The Cyanobacteria. Molecular biology, genomics and evolution. Caister Academic Press, Norfolk

    Google Scholar 

  • Liberton M, Howard Berg R, Heuser J, Roth R, Pakrasi HB (2006) Ultrastructure of the membrane systems in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. Protoplasma 227 (2):129–138. doi:10.1007/s00709-006-0145-7

    Google Scholar 

  • Liberton M, Austin JR II, Berg RH, Pakrasi HB (2011) Unique thylakoid membrane architecture of a unicellular N2-fixing cyanobacterium revealed by electron tomography. Plant Physiol 155(4):1656–1666. doi:10.1104/pp.110.165332

    Article  PubMed  CAS  Google Scholar 

  • Lindsey JK, Vance BD, Keeter JS, Scholes VE (1971) Spheroplast formation and associated ultrastructural changes in a synchronous culture of Anacystis nidulans treated with lysozyme. J Phycol 7(1):65–71. doi:10.1111/j.1529-8817.1971.tb01481.x

    CAS  Google Scholar 

  • Mashburn-Warren L, Mclean RJC, Whiteley M (2008) Gram-negative outer membrane vesicles: beyond the cell surface. Geobiology 6(3):214–219. doi:10.1111/j.1472-4669.2008.00157.x

    Article  PubMed  CAS  Google Scholar 

  • Mashburn-Warren LM, Whiteley M (2006) Special delivery: vesicle trafficking in prokaryotes. Mol Microbiol 61(4):839–846. doi:10.1111/j.1365-2958.2006.05272.x

    Article  PubMed  CAS  Google Scholar 

  • Mayrand D, Grenier D (1989) Biological activities of outer membrane vesicles. Can J Microbiol 35(6):607–613

    Article  PubMed  CAS  Google Scholar 

  • Merino V, Hernández-Mariné VM, Fernández M (1994) Ultrastructure of Mastigocladopsis repens (Stigonematales, Cyanophyceae). Cryptogamie Algologie 15(1):37–46

    Google Scholar 

  • Michailova L, Ivanova E, Toshkov A, Jordanova M, Schmitt-Slomska J (1986) Some morphological and functional aspects of the penicillin-induced stable L-forms of Escherichia coli. Acta Microbiol Bulg 19:3–7

    PubMed  CAS  Google Scholar 

  • Mineeva LA, Baulina OI, Semenova LR (1980) Electron microscopic and physiological study of cal spheroplasts of cyanobacteria (in Russian). In: Abstracts of the 6th All-Union Microbiology Society congress, Riga, 25–29 March 1980

    Google Scholar 

  • Mineeva LA, Semenova LR, Gusev MV (1979) Effect of lysozyme, ethylenediaminetetraacetate, magnesium and mannittol on spheroplast formation in Anacystis nidulans (in Russian). Mikrobiologiya 48(4):693–698

    CAS  Google Scholar 

  • Nikitina KA, Ermakova LR, Khodzhaev MN, Gusev MV (1979) Changes in the ultrastructure of Anacystis nidulans cells at different temperatures (in Russian). Mikrobiologiya 48(3):476–480

    CAS  Google Scholar 

  • Nishiyama Y, Yamaguchi H (1990) Morphological detection of filipin-sterol complexes in the cytoplasmic membrane of staphylococcal L-form. Microbiol Immunol 34(1):25–34

    PubMed  CAS  Google Scholar 

  • Pavlova IB (1999) Patterns of bacterial population development in the environment (electron microscopy study). Doctoral dissertation, All-Russian Scientific Research Institute of Veterinary Sanitation, Hygiene and Ecology of the Russian Academy of Agricultural Sciences, Moscow

    Google Scholar 

  • Peshkov MA (1955) Bacterial cytology (in Russian). Akademii Nauk SSSR, Moscow-Leningrad

    Google Scholar 

  • Pinevich AV (1977) Preparation and electron microscopic study of true protoplasts of Anabaena variabilis (in Russian). Vestnik Leningradskogo Universiteta, Sriya biologicheskaya 15:109–112

    Google Scholar 

  • Pinevich AV (2006) Microbiology. Biology of prokariotes. Textbook (in Russian), vol 1. University of St. Petersburg, St. Petersburg

    Google Scholar 

  • Pinevich AV, Topchieva LV (1991) Autonomy of cyanobacterial intracellular membranes: electron cytochemical studies of Synechocystis sp. Microbiology 60(3):358–362

    Google Scholar 

  • Prozorovsky SV, Katz LN, Kagan GY (1981) L-forms of bacteria (mechanism of formation, structure, role in pathology) (in Russian). Meditsina, Moscow

    Google Scholar 

  • Prozorovsky SV, Zigangirova NA, Konstantinova ND, Kats LN (1987) The phenomenon of unbalanced growth in bacteria (in Russian). Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii 10:94–101

    Google Scholar 

  • Schmetterer G, Peschek GA, Sleytr UB (1983) Thylakoid degradation during photooxidative bleaching of the cyanobacterium Anacystis nidulans. Protoplasma 115(2–3):202–207. doi:10.1007/BF01279810115

    Article  Google Scholar 

  • Schneider D, Fuhrmann E, Scholz I, Hess WR, Graumann PL (2007) Fluorescence staining of live cyanobacterial cells suggest non-stringent chromosome segregation and absence of a connection between cytoplasmic and thylakoid membranes. BMC Cell Biology 8:39 doi:10.1186/1471-2121-8-39

    Google Scholar 

  • Schneider D, Fuhrmann E, Graumann P (2008) Structural organization of cyanobacterial membranes In: Abstracts of the 7th European workshop on molecular biology of cyanobacteria, ÄŒeské BudÄ›jovice, Czech Republic, 31 August–4 September 2008

    Google Scholar 

  • Semenova LR (1983) Cyanobacteria with defective cell wall. Dissertation, Lomonosov Moscow State University, Moscow

    Google Scholar 

  • Semenova LR, Mineeva LA, Gusev MV (1982) Effect of osmotic stabilizers on formation and photosynthetic activity of spheroplasts in cyanobacteria. Microbiology (Transl) 51(2):215–221

    Google Scholar 

  • Sieben S, Hertle R, Gumpert J, Braun V (1998) The Serratia marcescens hemolysin is secreted but not activated by stable protoplast-type L-forms of Proteus mirabilis. Arch Microbiol 170(4):236–242. doi:10.1007/s002030050638

    Article  PubMed  CAS  Google Scholar 

  • Sivonen K, Börner T (2008) Bioactive compounds produced by cyanobacteria. In: Herrero A, Flores E (eds) The cyanobacteria. Molecular biology, genomics and evolution. Caister Academic Press, Norfolk

    Google Scholar 

  • van de Meene AML, Hohmann-Marriott MF, Vermaas WFJ, Roberson RW (2006) The three-dimensional structure of the cyanobacterium Synechocystis sp. PCC 6803. Archives Microbiol 184 (5):259–270. doi:10.1007/s00203-005-0027-y

    Google Scholar 

  • Vysotskii VV, Bakulina NA, Vaisman IS, Efimova OG, Kotlyarov GA (1984) The structural principles of microbial populations as polymorphic multicellular systems (in Russian). In: Abstracts of the All-Union conference on the cytology of microorganisms, Institute of Biochemistry and Physiology of Microorganisms, Pushchino, Russia, 21–23 November 1984

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga I. Baulina .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baulina, O.I. (2012). Ultrastructural Plasticity of Cyanobacteria During the Enzymatic Induction of L-Transformation. In: Ultrastructural Plasticity of Cyanobacteria. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32781-0_3

Download citation

Publish with us

Policies and ethics