Skip to main content

The Functional Role of Interhemispheric Interactions in Human Motor Control

  • Chapter
  • First Online:
Cortical Connectivity

Abstract

Interhemispheric interactions in the motor system have been extensively examined using transcranial magnetic stimulation (TMS). Paired-pulse TMS and the ipsilateral silent period (iSP) are the most widely used techniques to quantify interhemispheric inhibitory interactions between primary motor cortices in humans. This review will discuss the use of these techniques during unimanual and bimanual actions. The available evidence provides a framework for understanding the contribution of inhibitory interactions to the control of a resting limb during unilateral actions, while their role in the control of a limb executing a motor action remains poorly understood. Evidence shows that during bilateral actions voluntary activity of one hand can influence interhemispheric inhibitory interactions controlling the contralateral active hand. All studies point to the view that the modulation of interhemispheric interactions in the motor system changes in a task-dependent manner. These results might be of interest for patients with motor disorders and emphasizes the need of a careful interpretation when extrapolating results between different motor actions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amassian VE, Cracco RQ, Maccabee PJ (1989) Focal stimulation of human cerebral cortex with the magnetic coil: a comparison with electrical stimulation. Electroencephalogr Clin Neurophysiol 74:401–416

    Article  PubMed  CAS  Google Scholar 

  • Beloozerova IN, Sirota MG, Swadlow HA (2003a) Activity of different classes of neurons of the motor cortex during locomotion. J Neurosci 23:1087–1097

    PubMed  CAS  Google Scholar 

  • Beloozerova IN, Sirota MG, Swadlow HA, Orlovsky GN, Popova LB, Deliagina TG (2003b) Activity of different classes of neurons of the motor cortex during postural corrections. J Neurosci 23:7844–7853

    PubMed  CAS  Google Scholar 

  • Boroojerdi B, Diefenbach K, Ferbert A (1996) Transcallosal inhibition in cortical and subcortical cerebral vascular lesions. J Neurol Sci 144:160–170

    Article  PubMed  CAS  Google Scholar 

  • Carson RG (1995) The dynamics of isometric bimanual coordination. Exp Brain Res 105:465–476

    PubMed  CAS  Google Scholar 

  • Carson RG (2005) Neural pathways mediating bilateral interactions between the upper limbs. Brain Res Brain Res Rev 49:641–662

    Article  PubMed  CAS  Google Scholar 

  • Carson RG, Riek S, Smethurst CJ, Párraga JF, Byblow WD (2000) Neuromuscular-skeletal constraints upon the dynamics of unimanual and bimanual coordination. Exp Brain Res 131:196–214

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Yung D, Li JY (2003) Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex. J Neurophysiol 89:1256–1264

    Article  PubMed  Google Scholar 

  • Cincotta M, Ziemann U (2008) Neurophysiology of unimanual motor control and mirror movements. Clin Neurophysiol 119:744–762

    Article  PubMed  CAS  Google Scholar 

  • Cracco RQ, Amassian VE, Maccabee PJ, Cracco JB (1989) Comparison of human transcallosal responses evoked by magnetic coil and electrical stimulation. Electroencephalogr Clin Neurophysiol 74:417–424

    Article  PubMed  CAS  Google Scholar 

  • Danek A, Heye B, Schroedter R (1992) Cortically evoked motor responses in patients with Xp22.3-linked Kallmann’s syndrome and in female gene carriers. Ann Neurol 31:299–304

    Article  PubMed  CAS  Google Scholar 

  • De Cardoso OS, Gribova A, Donchin O, Bergman H, Vaadia E (2001) Neural interactions between motor cortical hemispheres during bimanual and unimanual arm movements. Eur J Neurosci 14:1881–1896

    Google Scholar 

  • Di Lazzaro V, Restuccia D, Oliviero A, Profice P, Ferrara L, Insola A, Mazzone P, Tonali P, Rothwell JC (1998) Magnetic transcranial stimulation at intensities below active motor threshold activates intracortical inhibitory circuits. Exp Brain Res 119:265–268

    Article  PubMed  Google Scholar 

  • Di Lazzaro V, Oliviero A, Profice P, Insola A, Mazzone P, Tonali P, Rothwell JC (1999) Direct demonstration of interhemispheric inhibition of the human motor cortex produced by transcranial magnetic stimulation. Exp Brain Res 124:520–524

    Article  PubMed  Google Scholar 

  • Diedrichsen J, Hazeltine E, Nurss WK, Ivry RB (2003) The role of the corpus callosum in the coupling of bimanual isometric force pulses. J Neurophysiol 90:2409–2418

    Article  PubMed  Google Scholar 

  • Dounskaia N, Nogueira KG, Swinnen SP, Drummond E (2010) Limitations on coupling of bimanual movements caused by arm dominance: when the muscle homology principle fails. J Neurophysiol 103:2027–2038

    Article  PubMed  Google Scholar 

  • Duque J, Mazzocchio R, Dambrosia J, Murase N, Olivier E, Cohen LG (2005) Kinematically specific interhemispheric inhibition operating in the process of generation of a voluntary movement. Cereb Cortex 15:588–593

    Article  PubMed  CAS  Google Scholar 

  • Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD (1992) Interhemispheric inhibition of the human motor cortex. J Physiol 453:525–546

    PubMed  CAS  Google Scholar 

  • Franz EA, Eliassen JC, Ivry RB, Gazzaniga MS (1996) Dissociation of spatial and temporal coupling in the bimanual movements of callosotomy patients. Psychol Sci 7:306–310

    Article  Google Scholar 

  • Giovannelli F, Borgheresi A, Balestrieri F, Zaccara G, Viggiano MP, Cincotta M, Ziemann U (2009) Modulation of interhemispheric inhibition by volitional motor activity: an ipsilateral silent period study. J Physiol 587:5393–5410

    Article  PubMed  CAS  Google Scholar 

  • Gould HJ 3rd, Cusick CG, Pons TP, Kaas JH (1986) The relationship of corpus callosum connections to electrical stimulation maps of motor, supplementary motor, and the frontal eye fields in owl monkeys. J Comp Neurol 247:297–325

    Article  PubMed  Google Scholar 

  • Gurfinkel V, Cacciatore TW, Cordo P, Horak F, Nutt J, Skoss R (2006) Postural muscle tone in the body axis of healthy humans. J Neurophysiol 96: 2678–2687

    Article  PubMed  Google Scholar 

  • Hasan Z (2005) The human motor control system's response to mechanical perturbation: should it, can it, and does it ensure stability? J Mot Behav 37:484–493

    Article  PubMed  CAS  Google Scholar 

  • Hess CW, Mills KR, Murray NM (1986) Magnetic stimulation of the human brain: facilitation of motor responses by voluntary contraction of ipsilateral and contralateral muscles with additional observations on an amputee. Neurosci Lett 71:235–240

    Article  PubMed  CAS  Google Scholar 

  • Hinder MR, Schmidt MW, Garry MI, Summers JJ (2010) Unilateral contractions modulate interhemispheric inhibition most strongly and most adaptively in the homologous muscle of the contralateral limb. Exp Brain Res 205:423–433

    Article  PubMed  Google Scholar 

  • Hortobagyi T, Taylor JL, Petersen NT, Russell G, Gandevia SC (2003) Changes in segmental and motor cortical output with contralateral muscle contractions and altered sensory inputs in humans. J Neurophysiol 90:2451–2459

    Article  PubMed  Google Scholar 

  • Hübers A, Orekhov Y, Ziemann U (2008) Interhemispheric motor inhibition: its role in controlling electromyographic mirror activity. Eur J Neurosci 28:364–371

    Article  PubMed  Google Scholar 

  • Irlbacher K, Brocke J, Mechow JV, Brandt SA (2007) Effects of GABA(A) and GABA(B) agonists on interhemispheric inhibition in man. Clin Neurophysiol 118:308–316

    Article  PubMed  CAS  Google Scholar 

  • Kalaska JF, Scott SH, Cisek P, Sergio LE (1997) Cortical control of reaching movements. Curr Opin Neurobiol 7:849–859

    Article  PubMed  CAS  Google Scholar 

  • Kelso JA (1984) Phase transitions and critical behavior in human bimanual coordination. Am J Physiol 246:1000–1004

    Google Scholar 

  • Kennerley SW, Diedrichsen J, Hazeltine E, Semjen A, Ivry RB (2002) Callosotomy patients exhibit temporal uncoupling during continuous bimanual movements. Nat Neurosci 5:376–381

    Article  PubMed  CAS  Google Scholar 

  • Killackey HP, Gould HJ 3rd, Cusick CG, Pons TP, Kaas JH (1983) The relation of corpus callosum connections to architectonic fields and body surface maps in sensorimotor cortex of new and old world monkeys. J Comp Neurol 219:384–419

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Hutchinson S, Schlaug G, Pascual-Leone A (2003) Ipsilateral motor cortex activation on functional magnetic resonance imaging during unilateral hand movements is related to interhemispheric interactions. Neuroimage 20:2259–2270

    Article  PubMed  Google Scholar 

  • Kukaswadia S, Wagle-Shukla A, Morgante F, Gunraj C, Chen R (2005) Interactions between long latency afferent inhibition and interhemispheric inhibitions in the human motor cortex. J Physiol 563:915–924

    Article  PubMed  CAS  Google Scholar 

  • Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol 471: 501–519

    PubMed  CAS  Google Scholar 

  • Lee H, Gunraj C, Chen R (2007) The effects of inhibitory and facilitatory intracortical circuits on interhemispheric inhibition in the human motor cortex. J Physiol 580:1021–1032

    Article  PubMed  CAS  Google Scholar 

  • Leinsinger GL, Heiss DT, Jassoy AG, Pfluger T, Hahn K, Danek A (1997) Persistent mirror movements: functional MR imaging of the hand motor cortex. Radiology 203:545–552

    PubMed  CAS  Google Scholar 

  • Leocani L, Cohen LG, Wassermann EM, Ikoma K, Hallett M (2000) Human corticospinal excitability evaluated with transcranial magnetic stimulation during different reaction time paradigms. Brain 123:1161–1173

    Article  PubMed  Google Scholar 

  • Liepert J, Dettmers C, Terborg C, Weiller C (2001) Inhibition of ipsilateral motor cortex during phasic generation of low force. Clin Neurophysiol 112:114–121

    Article  PubMed  CAS  Google Scholar 

  • Mayston MJ, Harrison LM, Stephens JA (1999) A neurophysiological study of mirror movements in adults and children. Ann Neurol 45:583–594

    Article  PubMed  CAS  Google Scholar 

  • Meyer BU, Roricht S, von Grafin EH, Kruggel F, Weindl A (1995) Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal humans and patients with abnormalities of the corpus callosum. Brain 118:429–440

    Google Scholar 

  • Meyer BU, Roricht S, Woiciechowsky C (1998) Topography of fibers in the human corpus callosum mediating interhemispheric inhibition between the motor cortices. Ann Neurol 43:360–369

    Article  PubMed  CAS  Google Scholar 

  • Muellbacher W, Facchini S, Boroojerdi B, Hallett M (2000) Changes in motor cortex excitability during ipsilateral hand muscle activation in humans. Clin Neurophysiol 111:344–349

    Article  PubMed  CAS  Google Scholar 

  • Ni Z, Gunraj C, Nelson AJ, Yeh IJ, Castillo G, Hoque T, Chen R (2009) Two phases of interhemispheric inhibition between motor related cortical areas and the primary motor cortex in human. Cereb Cortex 19:1654–1665

    Article  PubMed  Google Scholar 

  • Pandya DN, Vignolo LA (1971) Intra- and interhemispheric projections of the precentral, premotor and arcuate areas in the rhesus monkey. Brain Res 26:217–233

    PubMed  CAS  Google Scholar 

  • Pappas CL, Strick PL (1981) Anatomical demonstration of multiple representation in the forelimb region of the cat motor cortex. J Comp Neurol 200:491–500

    Article  PubMed  CAS  Google Scholar 

  • Park WH, Perez MA (2010) Corticospinal contribution to bilateral in-phase and out-phase arm movements. Abstract SFN, Poster 592.12/GGG17

    Google Scholar 

  • Perez MA, Cohen LG (2008) Mechanisms underlying functional changes in the primary motor cortex ipsilateral to an active hand. J Neuroscience 28:5631–5640

    Article  CAS  Google Scholar 

  • Perez MA, Cohen LG (2009a) Scaling of motor cortical excitability during unimanual force generation. Cortex 45:1065–1071

    Article  PubMed  Google Scholar 

  • Perez MA, Cohen LG (2009b) The corticospinal system and transcranial magnetic stimulation in stroke. Topics Stroke 16:254–269

    Article  Google Scholar 

  • Perez MA, Butler JE, Taylor JL. Transcallosal inhibition between proximal arm muscles during isometric voluntary contractions. Abstract SFN, Poster 663.2/DD3 2009

    Google Scholar 

  • Reis J, Swayne OB, Vandermeeren Y, Camus M, Dimyan MA, Harris-Love ML, Perez MA, Ragert P, Rothwell JC, Cohen LG (2008) Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. J Physiol 586:325–351

    Article  PubMed  CAS  Google Scholar 

  • Ridderikhoff A, Peper CL, Beek PJ (2005) Unraveling interlimb interactions underlying bimanual coordination. J Neurophysiol 94:3112–3125

    Article  PubMed  Google Scholar 

  • Rokni U, Steinberg O, Vaadia E, Sompolinsky H (2003) Cortical representation of bimanual movements. J Neurosci 23:11577–11586

    PubMed  CAS  Google Scholar 

  • Rouiller EM, Babalian A, Kazennikov O, Moret V, Yu XH, Wiesendanger M (1994a) Transcallosal connections of the distal forelimb representations of the primary and supplementary motor cortical areas in macaque monkeys. Exp Brain Res 102:227–243

    Article  PubMed  CAS  Google Scholar 

  • Rouiller EM, Babalian A, Kazennikov O, Moret V, Yu XH, Wiesendanger M (1994b) Transcallosal connections of the distal forelimb representations of the primary and supplementary motor cortical areas in macaque monkeys. Exp Brain Res 102:227–243

    Article  PubMed  CAS  Google Scholar 

  • Scott SH (2000) Role of motor cortex in coordinating multi-joint movements: is it time for a new paradigm? Can J Physiol Pharmacol 78:923–933

    Article  PubMed  CAS  Google Scholar 

  • Sehm B, Perez MA, Xu B, Hidler J, Cohen LG (2010) Functional neuroanatomy of mirroring during a unimanual force generation task. Cereb Cortex 20:34–45

    Article  PubMed  CAS  Google Scholar 

  • Serrien DJ, Nirkko AC, Wiesendanger M (2001) Role of the corpus callosum in bimanual coordination: a comparison of patients with congenital and acquired callosal damage. Eur J Neurosci 14:1897–1905

    Article  PubMed  CAS  Google Scholar 

  • Shinohara M, Keenan KG, Enoka RM (2003) Contralateral activity in a homologous hand muscle during voluntary contractions is greater in old adults. J Appl Physiol 94:966–974

    PubMed  Google Scholar 

  • Sohn YH, Jung HY, Kaelin-Lang A, Hallett M (2003) Excitability of the ipsilateral motor cortex during phasic voluntary hand movement. Exp Brain Res 148:176–185

    PubMed  Google Scholar 

  • Soteropoulos DS, Baker SN (2007) Different contributions of the corpus callosum and cerebellum to motor coordination in monkey. J Neurophysiol 98:2962–2973

    Article  PubMed  Google Scholar 

  • Soteropoulos DS, Perez MA (2011) Physiological changes underlying bilateral isometric arm voluntary contractions in healthy humans. J Neurophysiol 105:1594–1602

    Article  PubMed  Google Scholar 

  • Stedman A, Davey NJ, Ellaway PH (1998) Facilitation of human first dorsal interosseous muscle responses to transcranial magnetic stimulation during voluntary contraction of the contralateral homonymous muscle. Muscle Nerve 21:1033–1039

    Article  PubMed  CAS  Google Scholar 

  • Swadlow HA (1994) Efferent neurons and suspected interneurons in motor cortex of the awake rabbit: axonal properties, sensory receptive fields, and subthreshold synaptic inputs. J Neurophysiol 71:437–453

    PubMed  CAS  Google Scholar 

  • Swinnen SP (2002) Intermanual coordination: from behavioural principles to neural-network interactions. Nat Rev Neurosci 3:348–359

    Article  PubMed  Google Scholar 

  • Swinnen SP, Wenderoth N (2004) Two hands, one brain: cognitive neuroscience of bimanual skill. Trends Cogn Sci 8:18–25

    Article  PubMed  Google Scholar 

  • Talelli P, Waddingham W, Ewas A, Rothwell JC, Ward NS (2008) The effect of age on task-related modulation of interhemispheric balance. Exp Brain Res 186:59–66

    Article  PubMed  CAS  Google Scholar 

  • Tinazzi M, Zanette G (1998) Modulation of ipsilateral motor cortex in man during unimanual finger movements of different complexities. Neurosci Lett 244:121–124

    Article  PubMed  CAS  Google Scholar 

  • Vercauteren K, Pleysier T, Van Belle L, Swinnen SP, Wenderoth N (2008) Unimanual muscle activation increases interhemispheric inhibition from the active to the resting hemisphere. Neurosci Lett 445:209–213

    Article  PubMed  CAS  Google Scholar 

  • Wassermann EM, Fuhr P, Cohen LG, Hallett M (1991) Effects of transcranial magnetic stimulation on ipsilateral muscles. Neurology 41:1795–1799

    Article  PubMed  CAS  Google Scholar 

  • Yedimenko JA, Perez MA (2010) The effect of bilateral isometric forces in different directions on motor cortical function in humans. J Neurophysiol 104:2922–2931

    Article  PubMed  Google Scholar 

  • Zijdewind I, Kernell D (2001) Bilateral interactions during contractions of intrinsic hand muscles. J Neurophysiol 85:1907–1913

    Google Scholar 

  • Zijdewind I, Butler JE, Gandevia SC, Taylor JL (2006) The origin of activity in the biceps brachii muscle during voluntary contractions of the contralateral elbow flexor muscles. Exp Brain Res 175:526–535

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica A. Perez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Perez, M.A. (2012). The Functional Role of Interhemispheric Interactions in Human Motor Control. In: Chen, R., Rothwell, J. (eds) Cortical Connectivity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32767-4_9

Download citation

Publish with us

Policies and ethics