Skip to main content

Stroke

  • Chapter
  • First Online:
Cortical Connectivity

Abstract

Stroke causes lesions that affect both grey and white matter in the brain, typically in one hemisphere. The resulting impairments are due to loss of function at the site of the lesion, as well as loss of functional connectivity between the lesion site and other parts of the central nervous system. Stroke, therefore, perturbs networks responsible for a range of functions, in both the ipsilesional and contralesional hemispheres. This chapter reviews the effects of stroke on networks responsible for voluntary motor activity, language and spatial attention. Asymmetric interhemispheric inhibition between homologous cortical network nodes is a common theme across these functional domains. Recovery after stroke requires reorganisation within the affected networks, and is limited by the extent of damage to connections between essential network nodes. Recruitment of existing or new nodes in the network, in either hemisphere, influences recovery of function, particularly at the sub-acute stage. However, the best recovery of function occurs with normalisation of network activity. After stroke, non-invasive brain stimulation can be used to either enhance or suppress activity of specific cortical nodes, and the functional connectivity between target and remote areas. The effective use of stimulation techniques with individual patients can be guided by measures of the activity and connectivity in the network of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerley SJ, Stinear CM, Barber PA, Byblow WD (2010) Combining theta burst stimulation with training after subcortical stroke. Stroke J Cereb Circ 41:1568–1572

    Google Scholar 

  • Ahn YH, Ahn SH, Kim H, Hong JH, Jang SH (2006) Can stroke patients walk after complete lateral corticospinal tract injury of the affected hemisphere? NeuroReport 17:987–990

    PubMed  Google Scholar 

  • Alstott J, Breakspear M, Hagmann P, Cammoun L, Sporns O (2009) Modeling the impact of lesions in the human brain. PLoS Comput Biol 5:e1000408

    PubMed  Google Scholar 

  • Andoh J, Martinot JL (2008) Interhemispheric compensation: a hypothesis of TMS-induced effects on language-related areas. Eur Psychiatry 23:281–288

    Google Scholar 

  • Baker JM, Rorden C, Fridriksson J (2010) Using transcranial direct-current stimulation to treat stroke patients with aphasia. Stroke 41:1229–1236

    PubMed  Google Scholar 

  • Bartolomeo P (2007) Visual neglect. Curr Opin Neurol 20:381–386

    PubMed  Google Scholar 

  • Bartolomeo P, Thiebaut de Schotten M, Doricchi F (2007) Left unilateral neglect as a disconnection syndrome. Cereb Cortex 17:2479–2490

    Google Scholar 

  • Barwood CH, Murdoch BE, Whelan BM, Lloyd D, Riek S, JD OS et al (2011) Improved language performance subsequent to low-frequency rTMS in patients with chronic non-fluent aphasia post-stroke. Eur J Neurol 18:935–943

    Google Scholar 

  • Bernal B, Ardila A (2009) The role of the arcuate fasciculus in conduction aphasia. Brain 132:2309–2316

    PubMed  Google Scholar 

  • Bestmann S, Swayne O, Blankenburg F, Ruff CC, Teo J, Weiskopf N et al (2010) The role of contralesional dorsal premotor cortex after stroke as studied with concurrent TMS-fMRI. J Neurosci 30:11926–11937

    PubMed  CAS  Google Scholar 

  • Bradnam LV, Stinear CM, Barber PA, Byblow WD (2011) Contralesional hemisphere control of the proximal paretic upper limb following stroke. Cereb Cortex doi:10.1093

  • Breier JI, Castillo EM, Boake C, Billingsley R, Maher L, Francisco G et al (2004) Spatiotemporal patterns of language-specific brain activity in patients with chronic aphasia after stroke using magnetoencephalography. Neuroimage 23:1308–1316

    PubMed  Google Scholar 

  • Breier JI, Hasan KM, Zhang W, Men D, Papanicolaou AC (2008) Language dysfunction after stroke and damage to white matter tracts evaluated using diffusion tensor imaging. Am J Neuroradiol 29:483–487

    PubMed  CAS  Google Scholar 

  • Breier JI, Juranek J, Maher LM, Schmadeke S, Men D, Papanicolaou AC (2009) Behavioral and neurophysiologic response to therapy for chronic aphasia. Arch Phys Med Rehabil 90:2026–2033

    PubMed  Google Scholar 

  • Brighina F, Bisiach E, Piazza A, Oliveri M, La Bua V, Daniele O et al (2002) Perceptual and response bias in visuospatial neglect due to frontal and parietal repetitive transcranial magnetic stimulation in normal subjects. NeuroReport 13:2571–2575

    PubMed  Google Scholar 

  • Byrnes ML, Thickbroom GW, Phillips BA, Mastaglia FL (2001) Long-term changes in motor cortical organisation after recovery from subcortical stroke. Brain Res 889:278–287

    PubMed  CAS  Google Scholar 

  • Calautti C, Jones PS, Guincestre JY, Naccarato M, Sharma N, Day DJ et al (2010) The neural substrates of impaired finger tapping regularity after stroke. Neuroimage 50:1–6

    PubMed  Google Scholar 

  • Catano A, Houa M, Caroyer JM, Ducarne H, Noel P (1996) Magnetic transcranial stimulation in acute stroke: early excitation threshold and functional prognosis. Electroencephalogr Clin Neurophysiol 101:233–239

    PubMed  CAS  Google Scholar 

  • Cazzoli D, Muri RM, Hess CW, Nyffeler T (2009) Horizontal and vertical dimensions of visual extinction: a theta burst stimulation study. Neuroscience 164:1609–1614

    PubMed  CAS  Google Scholar 

  • Cazzoli D, Muri RM, Hess CW, Nyffeler T (2010) Treatment of hemispatial neglect by means of rTMS–a review. Restor Neurol Neurosci 28:499–510

    PubMed  Google Scholar 

  • Clarkson AN, Huang BS, Macisaac SE, Mody I, Carmichael ST (2010) Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature 468:305–309

    PubMed  CAS  Google Scholar 

  • Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215

    PubMed  CAS  Google Scholar 

  • Corbetta M, Shulman GL (2011) Spatial neglect and attention networks. Annu Rev Neurosci 34:569–599

    PubMed  CAS  Google Scholar 

  • Corbetta M, Kincade MJ, Lewis C, Snyder AZ, Sapir A (2005) Neural basis and recovery of spatial attention deficits in spatial neglect. Nat Neurosci 8:1603–1610

    PubMed  CAS  Google Scholar 

  • Cramer SC, Nelles G, Benson RR, Kaplan JD, Parker RA, Kwong KK et al (1997) A functional MRI study of subjects recovered from hemiparetic stroke. Stroke J Cereb Circ 28:2518–2527

    CAS  Google Scholar 

  • Crinion JT, Leff AP (2007) Recovery and treatment of aphasia after stroke: functional imaging studies. Curr Opin Neurol 20:667–673

    PubMed  Google Scholar 

  • Dafotakis M, Grefkes C, Eickhoff SB, Karbe H, Fink GR, Nowak DA (2008) Effects of rTMS on grip force control following subcortical stroke. Exp Neurol 211:407–412

    PubMed  Google Scholar 

  • Dambeck N, Sparing R, Meister IG, Wienemann M, Weidemann J, Topper R et al (2006) Interhemispheric imbalance during visuospatial attention investigated by unilateral and bilateral TMS over human parietal cortices. Brain Res 1072:194–199

    PubMed  CAS  Google Scholar 

  • Davidoff RA (1990) The pyramidal tract. Neurology 40:332–339

    PubMed  CAS  Google Scholar 

  • Di Lazzaro V, Pilato F, Dileone M, Profice P, Capone F, Ranieri F et al (2008) Modulating cortical excitability in acute stroke: a repetitive TMS study. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 119:715–723

    Google Scholar 

  • Di Lazzaro V, Profice P, Pilato F, Capone F, Ranieri F, Pasqualetti P et al (2010) Motor cortex plasticity predicts recovery in acute stroke. Cereb Cortex 20:1523–1528

    PubMed  Google Scholar 

  • Donoghue JP, Suner S, Sanes JN (1990) Dynamic organization of primary motor cortex output to target muscles in adult rats. II. Rapid reorganization following motor nerve lesions. Experimental brain research. Experimentelle Hirnforschung. Exp Cereb 79:492–503

    CAS  Google Scholar 

  • Doricchi F (2008) Thiebaut de Schotten M, Tomaiuolo F, Bartolomeo P. White matter (dis)connections and gray matter (dys)functions in visual neglect: gaining insights into the brain networks of spatial awareness. Cortex 44:983–995

    PubMed  Google Scholar 

  • Dum RP, Strick PL (1996) Spinal cord terminations of the medial wall motor areas in macaque monkeys. J Neurosci 16:6513–6525

    PubMed  CAS  Google Scholar 

  • Dum RP, Strick PL (2005) Frontal lobe inputs to the digit representations of the motor areas on the lateral surface of the hemisphere. J Neurosci 25:1375–1386

    PubMed  CAS  Google Scholar 

  • Duque J, Hummel F, Celnik P, Murase N, Mazzocchio R, Cohen LG (2005) Transcallosal inhibition in chronic subcortical stroke. Neuroimage 28:940–946

    PubMed  Google Scholar 

  • Fierro B, Brighina F, Oliveri M, Piazza A, La Bua V, Buffa D et al (2000) Contralateral neglect induced by right posterior parietal rTMS in healthy subjects. NeuroReport 11:1519–1521

    PubMed  CAS  Google Scholar 

  • Fierro B, Brighina F, Piazza A, Oliveri M, Bisiach E (2001) Timing of right parietal and frontal cortex activity in visuo-spatial perception: a TMS study in normal individuals. NeuroReport 12:2605–2607

    PubMed  CAS  Google Scholar 

  • Fregni F, Boggio PS, Valle AC, Rocha RR, Duarte J, Ferreira MJ et al (2006) A sham-controlled trial of a 5-day course of repetitive transcranial magnetic stimulation of the unaffected hemisphere in stroke patients. Stroke 37:2115–2122

    PubMed  Google Scholar 

  • Fridriksson J (2010) Preservation and modulation of specific left hemisphere regions is vital for treated recovery from anomia in stroke. J Neurosci 30:11558–11564

    PubMed  CAS  Google Scholar 

  • Fridriksson J, Bonilha L, Baker JM, Moser D, Rorden C (2010) Activity in preserved left hemisphere regions predicts anomia severity in aphasia. Cereb Cortex 20:1013–1019

    PubMed  Google Scholar 

  • Fridriksson J, Richardson JD, Baker JM, Rorden C (2011) Transcranial direct current stimulation improves naming reaction time in fluent aphasia: a double-blind, sham-controlled study. Stroke 42:819–821

    PubMed  Google Scholar 

  • Gentner R, Wankerl K, Reinsberger C, Zeller D, Classen J (2008) Depression of human corticospinal excitability induced by magnetic theta-burst stimulation: evidence of rapid polarity-reversing metaplasticity. Cereb Cortex 18:2046–2053

    PubMed  Google Scholar 

  • Gerloff C, Bushara K, Sailer A, Wassermann EM, Chen R, Matsuoka T et al (2006) Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain 129:791–808

    PubMed  Google Scholar 

  • Gobel SM, Calabria M, Farne A, Rossetti Y (2006) Parietal rTMS distorts the mental number line: simulating ‘spatial’ neglect in healthy subjects. Neuropsychologia 44:860–868

    PubMed  Google Scholar 

  • Grefkes C, Nowak DA, Eickhoff SB, Dafotakis M, Kust J, Karbe H et al (2008) Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann Neurol 63:236–246

    PubMed  Google Scholar 

  • Grefkes C, Nowak DA, Wang LE, Dafotakis M, Eickhoff SB, Fink GR (2010) Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling. Neuroimage 50:233–242

    PubMed  Google Scholar 

  • Hamilton RH, Chrysikou EG, Coslett B (2011) Mechanisms of aphasia recovery after stroke and the role of noninvasive brain stimulation. Brain Lang 118:40–50

    PubMed  Google Scholar 

  • He BJ, Snyder AZ, Vincent JL, Epstein A, Shulman GL, Corbetta M (2007) Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron 53:905–918

    PubMed  CAS  Google Scholar 

  • Heald A, Bates D, Cartlidge NE, French JM, Miller S (1993) Longitudinal study of central motor conduction time following stroke. 2. Central motor conduction measured within 72 h after stroke as a predictor of functional outcome at 12 months. Brain J Neurol 116(Pt 6):1371–1385

    Google Scholar 

  • Heiss WD, Thiel A (2006) A proposed regional hierarchy in recovery of post-stroke aphasia. Brain Lang 98:118–123

    PubMed  Google Scholar 

  • Hilgetag CC, Theoret H, Pascual-Leone A (2001) Enhanced visual spatial attention ipsilateral to rTMS-induced ‘virtual lesions’ of human parietal cortex. Nat Neurosci 4:953–957

    PubMed  CAS  Google Scholar 

  • Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC (2005) Theta burst stimulation of the human motor cortex. Neuron 45:201–206

    PubMed  CAS  Google Scholar 

  • Hummel FC, Cohen LG (2006) Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol 5:708–712

    PubMed  Google Scholar 

  • Hummel F, Celnik P, Giraux P, Floel A, Wu WH, Gerloff C et al (2005) Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain J Neurol 128:490–499

    Google Scholar 

  • Hummel FC, Celnik P, Pascual-Leone A, Fregni F, Byblow WD, Buetefisch CM, et al (2008) Controversy: noninvasive and invasive cortical stimulation show efficacy in treating stroke patients. Brain Stimul 1:370–382

    PubMed  Google Scholar 

  • James GA, Lu ZL, VanMeter JW, Sathian K, Hu XP, Butler AJ (2009) Changes in resting state effective connectivity in the motor network following rehabilitation of upper extremity poststroke paresis. Top Stroke Rehabil 16:270–281

    PubMed  Google Scholar 

  • Jang SH (2009) The role of the corticospinal tract in motor recovery in patients with a stroke: a review. NeuroRehabilitation 24:285–290

    PubMed  Google Scholar 

  • Jankowska E, Edgley SA (2006) How can corticospinal tract neurons contribute to ipsilateral movements? A question with implications for recovery of motor functions. Neuroscientist 12:67–79

    PubMed  Google Scholar 

  • Johansen-Berg H, Rushworth MF, Bogdanovic MD, Kischka U, Wimalaratna S, Matthews PM (2002) The role of ipsilateral premotor cortex in hand movement after stroke. Proc Natl Acad Sci U S A 99:14518–14523

    PubMed  CAS  Google Scholar 

  • Kang EK, Kim YK, Sohn HM, Cohen LG, Paik NJ (2011) Improved picture naming in aphasia patients treated with cathodal tDCS to inhibit the right Broca’s homologue area. Restor Neurol Neurosci 29:141–152

    PubMed  Google Scholar 

  • Kaplan E, Naeser MA, Martin PI, Ho M, Wang Y, Baker E et al (2010) Horizontal portion of arcuate fasciculus fibers track to pars opercularis, not pars triangularis, in right and left hemispheres: a DTI study. Neuroimage 52:436–444

    PubMed  Google Scholar 

  • Karnath HO, Rorden C, Ticini LF (2009) Damage to white matter fiber tracts in acute spatial neglect. Cereb Cortex 19:2331–2337

    PubMed  Google Scholar 

  • Khedr EM, Ahmed MA, Fathy N, Rothwell JC (2005) Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke. Neurology 65:466–468

    PubMed  Google Scholar 

  • Khedr EM, Abdel-Fadeil MR, Farghali A, Qaid M (2009) Role of 1 and 3 Hz repetitive transcranial magnetic stimulation on motor function recovery after acute ischaemic stroke. Eur J Neurol Off J Eur Fed Neurol Soc 16:1323–1330

    CAS  Google Scholar 

  • Koch G, Oliveri M, Torriero S, Caltagirone C (2005) Modulation of excitatory and inhibitory circuits for visual awareness in the human right parietal cortex. Exp Brain Res 160:510–516

    PubMed  Google Scholar 

  • Koch G, Fernandez Del Olmo M, Cheeran B, Ruge D, Schippling S, Caltagirone C et al (2007) Focal stimulation of the posterior parietal cortex increases the excitability of the ipsilateral motor cortex. J Neurosci 27:6815–6822

    PubMed  CAS  Google Scholar 

  • Koch G, Oliveri M, Cheeran B, Ruge D, Lo Gerfo E, Salerno S, et al (2008) Hyperexcitability of parietal-motor functional connections in the intact left-hemisphere of patients with neglect. Brain 131:3147–3155

    Google Scholar 

  • Koch G, Bonni S, Giacobbe V, Bucchi G, Basile B, Lupo F et al (2012) Theta-burst stimulation of the left hemisphere accelerates recovery of hemispatial neglect. Neurology 78:24–30

    PubMed  CAS  Google Scholar 

  • Kreisler A, Godefroy O, Delmaire C, Debachy B, Leclercq M, Pruvo JP et al (2000) The anatomy of aphasia revisited. Neurology 54:1117–1123

    PubMed  CAS  Google Scholar 

  • Lim JY, Kang EK, Paik NJ (2010) Repetitive transcranial magnetic stimulation to hemispatial neglect in patients after stroke: an open-label pilot study. J Rehabil Med 42:447–452

    PubMed  Google Scholar 

  • Lindenberg R, Renga V, Zhu LL, Betzler F, Alsop D, Schlaug G (2009) Structural integrity of corticospinal motor fibers predicts motor impairment in chronic stroke. Neurology 74:280–287

    Google Scholar 

  • Lindenberg R, Zhu LL, Ruber T, Schlaug G (2011) Predicting functional motor potential in chronic stroke patients using diffusion tensor imaging. Hum Brain Mapp 33:1040–1051

    PubMed  Google Scholar 

  • Lotze M, Markert J, Sauseng P, Hoppe J, Plewnia C, Gerloff C (2006) The role of multiple contralesional motor areas for complex hand movements after internal capsular lesion. J Neurosci 26:6096–6102

    PubMed  CAS  Google Scholar 

  • Mackay J, Mensah G, Mendis S, Greenlund K (2004) The atlas of heart disease and stroke. World Health Organization, Geneva

    Google Scholar 

  • Mazevet D, Meunier S, Pradat-Diehl P, Marchand-Pauvert V, Pierrot-Deseilligny E (2003) Changes in propriospinally mediated excitation of upper limb motoneurons in stroke patients. Brain 126:988–1000

    PubMed  Google Scholar 

  • Meinzer M, Flaisch T, Breitenstein C, Wienbruch C, Elbert T, Rockstroh B (2008) Functional re-recruitment of dysfunctional brain areas predicts language recovery in chronic aphasia. Neuroimage 39:2038–2046

    PubMed  Google Scholar 

  • Meinzer M, Harnish S, Conway T, Crosson B (2011) Recent developments in functional and structural imaging of aphasia recovery after stroke. Aphasiology 25:271–290

    PubMed  Google Scholar 

  • Meister IG, Sparing R, Foltys H, Gebert D, Huber W, Topper R et al (2006) Functional connectivity between cortical hand motor and language areas during recovery from aphasia. J Neurol Sci 247:165–168

    PubMed  CAS  Google Scholar 

  • Menke R, Meinzer M, Kugel H, Deppe M, Baumgartner A, Schiffbauer H et al (2009) Imaging short- and long-term training success in chronic aphasia. BMC Neurosci 10:118

    PubMed  Google Scholar 

  • Mochizuki H, Huang YZ, Rothwell JC (2004) Interhemispheric interaction between human dorsal premotor and contralateral primary motor cortex. J Physiol 561:331–338

    PubMed  CAS  Google Scholar 

  • Murase N, Duque J, Mazzocchio R, Cohen LG (2004) Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol 55:400–409

    PubMed  Google Scholar 

  • Naeser MA, Martin PI, Nicholas M, Baker EH, Seekins H, Kobayashi M et al (2005) Improved picture naming in chronic aphasia after TMS to part of right Broca’s area: an open-protocol study. Brain Lang 93:95–105

    PubMed  Google Scholar 

  • Nowak DA, Grefkes C, Ameli M, Fink GR (2009) Interhemispheric competition after stroke: brain stimulation to enhance recovery of function of the affected hand. Neurorehabil Neural Repair 23:641–656

    PubMed  Google Scholar 

  • Nudo RJ (2003) Adaptive plasticity in motor cortex: implications for rehabilitation after brain injury. J Rehabil Med 41S:7–10

    Google Scholar 

  • Nyffeler T, Cazzoli D, Wurtz P, Luthi M, von Wartburg R, Chaves S et al (2008) Neglect-like visual exploration behaviour after theta burst transcranial magnetic stimulation of the right posterior parietal cortex. Eur J Neurosci 27:1809–1813

    PubMed  Google Scholar 

  • Nyffeler T, Cazzoli D, Hess CW, Muri RM (2009) One session of repeated parietal theta burst stimulation trains induces long-lasting improvement of visual neglect. Stroke 40:2791–2796

    PubMed  Google Scholar 

  • Oliveri M, Rossini PM, Traversa R, Cicinelli P, Filippi MM, Pasqualetti P et al (1999) Left frontal transcranial magnetic stimulation reduces contralesional extinction in patients with unilateral right brain damage. Brain 122(Pt 9):1731–1739

    PubMed  Google Scholar 

  • Oliveri M, Caltagirone C, Filippi MM, Traversa R, Cicinelli P, Pasqualetti P et al (2000a) Paired transcranial magnetic stimulation protocols reveal a pattern of inhibition and facilitation in the human parietal cortex. J Physiol 529(Pt 2):461–468

    PubMed  CAS  Google Scholar 

  • Oliveri M, Rossini PM, Filippi MM, Traversa R, Cicinelli P, Palmieri MG et al (2000b) Time-dependent activation of parieto-frontal networks for directing attention to tactile space. A study with paired transcranial magnetic stimulation pulses in right-brain-damaged patients with extinction. Brain 123(Pt 9):1939–1947

    PubMed  Google Scholar 

  • O’Shea J, Johansen-Berg H, Trief D, Gobel S, Rushworth MF (2007) Functionally specific reorganization in human premotor cortex. Neuron 54:479–490

    PubMed  Google Scholar 

  • Pineiro R, Pendlebury S, Johansen-Berg H, Matthews PM (2001) Functional MRI detects posterior shifts in primary sensorimotor cortex activation after stroke: evidence of local adaptive reorganization? Stroke J Cereb Circ 32:1134–1139

    CAS  Google Scholar 

  • Piron L, Piccione F, Tonin P, Dam M (2005) Clinical correlation between motor evoked potentials and gait recovery in poststroke patients. Arch Phys Med Rehabil 86:1874–1878

    PubMed  Google Scholar 

  • Postman-Caucheteux WA, Birn RM, Pursley RH, Butman JA, Solomon JM, Picchioni D et al (2010) Single-trial fMRI shows contralesional activity linked to overt naming errors in chronic aphasic patients. J Cogn Neurosci 22:1299–1318

    PubMed  Google Scholar 

  • Ptak R, Schnider A (2010) The dorsal attention network mediates orienting toward behaviorally relevant stimuli in spatial neglect. J Neurosci 30:12557–12565

    PubMed  CAS  Google Scholar 

  • Rehme AK, Eickhoff SB, Wang LE, Fink GR, Grefkes C (2011a) Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke. NeuroImage 55:1147–1158

    PubMed  Google Scholar 

  • Rehme AK, Fink GR, von Cramon DY, Grefkes C (2011b) The role of the contralesional motor cortex for motor recovery in the early days after stroke assessed with longitudinal FMRI. Cereb Cortex 21:756–768

    PubMed  Google Scholar 

  • Rossini PM, Caltagirone C, Castriota-Scanderbeg A, Cicinelli P, Del Gratta C, Demartin M et al (1998) Hand motor cortical area reorganization in stroke: a study with fMRI, MEG and TCS maps. Neuroreport 9:2141–2146

    PubMed  CAS  Google Scholar 

  • Sack AT (2010) Using non-invasive brain interference as a tool for mimicking spatial neglect in healthy volunteers. Restor Neurol Neurosci 28:485–497

    PubMed  Google Scholar 

  • Sanes JN, Donoghue JP (2000) Plasticity and primary motor cortex. Annu Rev Neurosci 23:393–415

    PubMed  CAS  Google Scholar 

  • Saur D, Lange R, Baumgaertner A, Schraknepper V, Willmes K, Rijntjes M et al (2006) Dynamics of language reorganization after stroke. Brain 129:1371–1384

    PubMed  Google Scholar 

  • Schaechter JD, Fricker ZP, Perdue KL, Helmer KG, Vangel MG, Greve DN et al (2009) Microstructural status of ipsilesional and contralesional corticospinal tract correlates with motor skill in chronic stroke patients. Hum Brain Mapp 30:3461–3474

    PubMed  Google Scholar 

  • Schlaug G, Marchina S, Norton A (2009) Evidence for plasticity in white-matter tracts of patients with chronic Broca’s aphasia undergoing intense intonation-based speech therapy. Ann N Y Acad Sci 1169:385–394

    PubMed  Google Scholar 

  • Schwerin S, Dewald JP, Haztl M, Jovanovich S, Nickeas M, MacKinnon C (2008) Ipsilateral versus contralateral cortical motor projections to a shoulder adductor in chronic hemiparetic stroke: implications for the expression of arm synergies. Exp Brain Res 185:509–519

    PubMed  Google Scholar 

  • Seitz RJ, Azari NP, Knorr U, Binkofski F, Herzog H, Freund HJ (1999) The role of diaschisis in stroke recovery. Stroke 30:1844–1850

    PubMed  CAS  Google Scholar 

  • Seshadri S, Beiser A, Kelly-Hayes M, Kase CS, Au R, Kannel WB et al (2006) The lifetime risk of stroke: estimates from the Framingham Study. Stroke 37:345–350

    PubMed  Google Scholar 

  • Shimizu T, Hosaki A, Hino T, Sato M, Komori T, Hirai S et al (2002) Motor cortical disinhibition in the unaffected hemisphere after unilateral cortical stroke. Brain 125:1896–1907

    PubMed  Google Scholar 

  • Song W, Du B, Xu Q, Hu J, Wang M, Luo Y (2009) Low-frequency transcranial magnetic stimulation for visual spatial neglect: a pilot study. J Rehabil Med 41:162–165

    PubMed  Google Scholar 

  • Sparing R, Thimm M, Hesse MD, Kust J, Karbe H, Fink GR (2009) Bidirectional alterations of interhemispheric parietal balance by non-invasive cortical stimulation. Brain 132:3011–3020

    PubMed  CAS  Google Scholar 

  • Stinear C (2010) Prediction of recovery of motor function after stroke. Lancet Neurol 9:1228–1232

    PubMed  Google Scholar 

  • Stinear JW, Byblow WD (2004) The contribution of cervical propriospinal premotoneurons in recovering hemiparetic stroke patients. J Clin Neurophysiol 21:426–434

    PubMed  Google Scholar 

  • Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow WD (2007) Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain 130:170–180

    PubMed  Google Scholar 

  • Stinear CM, Barber PA, Coxon JP, Fleming MK, Byblow WD (2008) Priming the motor system enhances the effects of upper limb therapy in chronic stroke. Brain 131:1381–1390

    PubMed  Google Scholar 

  • Stinear CM, Barber PA, Petoe M, Anwar S, Byblow WD (2012) The PREP algorithm predicts potential for upper limb recovery after stroke. Brain 135:2427–2535

    Google Scholar 

  • Strens LH, Asselman P, Pogosyan A, Loukas C, Thompson AJ, Brown P (2004) Corticocortical coupling in chronic stroke: its relevance to recovery. Neurology 63:475–484

    PubMed  CAS  Google Scholar 

  • Swayne OB, Rothwell JC, Ward NS, Greenwood RJ (2008) Stages of motor output reorganization after hemispheric stroke suggested by longitudinal studies of cortical physiology. Cereb Cortex 18:1909–1922

    PubMed  Google Scholar 

  • Szaflarski JP, Vannest J, Wu SW, DiFrancesco MW, Banks C, Gilbert DL (2011) Excitatory repetitive transcranial magnetic stimulation induces improvements in chronic post-stroke aphasia. Med Sci Monit 17:CR132–CR139

    Google Scholar 

  • Takeuchi N, Chuma T, Matsuo Y, Watanabe I, Ikoma K (2005) Repetitive transcranial magnetic stimulation of contralesional primary motor cortex improves hand function after stroke. Stroke 36:2681–2686

    PubMed  Google Scholar 

  • Talelli P, Greenwood RJ, Rothwell JC (2007a) Exploring Theta Burst Stimulation as an intervention to improve motor recovery in chronic stroke. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 118:333–342

    CAS  Google Scholar 

  • Talelli P, Greenwood RJ, Rothwell JC (2007b) Exploring Theta Burst Stimulation as an intervention to improve motor recovery in chronic stroke. Clin Neurophysiol 118:333–342

    PubMed  CAS  Google Scholar 

  • Thiel A, Schumacher B, Wienhard K, Gairing S, Kracht LW, Wagner R et al (2006) Direct demonstration of transcallosal disinhibition in language networks. J Cereb Blood Flow Metab 26:1122–1127

    PubMed  Google Scholar 

  • Traversa R, Cicinelli P, Pasqualetti P, Filippi M, Rossini PM (1998) Follow-up on interhemispheric differences of motor evoked potentials from the “affected” and “unaffected” hemispheres in human stroke. Brain Res 803:1–8

    PubMed  CAS  Google Scholar 

  • Trompetto C, Assini A, Buccolieri A, Marchese R, Abbruzzese G (2000) Motor recovery following stroke: a transcranial magnetic stimulation study. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 111:1860–1867

    CAS  Google Scholar 

  • Turkeltaub PE, Messing S, Norise C, Hamilton RH (2011) Are networks for residual language function and recovery consistent across aphasic patients? Neurology 76:1726–1734

    PubMed  Google Scholar 

  • Turton A, Wroe S, Trepte N, Fraser C, Lemon RN (1996) Contralateral and ipsilateral EMG responses to transcranial magnetic stimulation during recovery of arm and hand function after stroke. Electroencephalogr Clin Neurophysiol 101:316–328

    PubMed  CAS  Google Scholar 

  • Urbanski M, Thiebaut de Schotten M, Rodrigo S, Oppenheim C, Touze E, Meder JF, et al (2011) DTI-MR tractography of white matter damage in stroke patients with neglect. Exp Brain Res 208:491–505

    Google Scholar 

  • van Oers CA, Vink M, van Zandvoort MJ, van der Worp HB, de Haan EH, Kappelle LJ et al (2010) Contribution of the left and right inferior frontal gyrus in recovery from aphasia. A functional MRI study in stroke patients with preserved hemodynamic responsiveness. Neuroimage 49:885–893

    PubMed  Google Scholar 

  • Verdon V, Schwartz S, Lovblad KO, Hauert CA, Vuilleumier P (2010) Neuroanatomy of hemispatial neglect and its functional components: a study using voxel-based lesion-symptom mapping. Brain 133:880–894

    PubMed  Google Scholar 

  • Ward NS, Brown MM, Thompson AJ, Frackowiak RS (2003) Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain 126:2476–2496

    PubMed  CAS  Google Scholar 

  • Ward NS, Newton JM, Swayne OB, Lee L, Thompson AJ, Greenwood RJ et al (2006) Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain 129:809–819

    PubMed  Google Scholar 

  • Ward NS, Newton JM, Swayne OB, Lee L, Frackowiak RS, Thompson AJ et al (2007) The relationship between brain activity and peak grip force is modulated by corticospinal system integrity after subcortical stroke. Eur J Neurosci 25:1865–1873

    PubMed  Google Scholar 

  • Warren JE, Crinion JT, Lambon Ralph MA, Wise RJ (2009) Anterior temporal lobe connectivity correlates with functional outcome after aphasic stroke. Brain 132:3428–3442

    Google Scholar 

  • Weiduschat N, Thiel A, Rubi-Fessen I, Hartmann A, Kessler J, Merl P et al (2011) Effects of repetitive transcranial magnetic stimulation in aphasic stroke: a randomized controlled pilot study. Stroke 42:409–415

    PubMed  Google Scholar 

  • Winhuisen L, Thiel A, Schumacher B, Kessler J, Rudolf J, Haupt WF et al (2005) Role of the contralateral inferior frontal gyrus in recovery of language function in poststroke aphasia: a combined repetitive transcranial magnetic stimulation and positron emission tomography study. Stroke 36:1759–1763

    PubMed  Google Scholar 

  • Winhuisen L, Thiel A, Schumacher B, Kessler J, Rudolf J, Haupt WF et al (2007) The right inferior frontal gyrus and poststroke aphasia: a follow-up investigation. Stroke 38:1286–1292

    PubMed  Google Scholar 

  • Wise SP (1985) The oprimate premtor cortex: past, present, and preparatory. Annu Rev Neurosci 8:1–19

    PubMed  CAS  Google Scholar 

  • Yao J, Chen A, Carmona C, Dewald JP (2009) Cortical overlap of joint representations contributes to the loss of independent joint control following stroke. NeuroImage 45:490–499

    PubMed  Google Scholar 

  • You DS, Kim DY, Chun MH, Jung SE, Park SJ (2011) Cathodal transcranial direct current stimulation of the right Wernicke’s area improves comprehension in subacute stroke patients. Brain Lang 119:1–5

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cathy M. Stinear .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Stinear, C.M., Byblow, W.D. (2012). Stroke . In: Chen, R., Rothwell, J. (eds) Cortical Connectivity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32767-4_13

Download citation

Publish with us

Policies and ethics