Skip to main content

Cationic Intermediates in the Ni(0)-Catalyzed Heck Reaction

  • Chapter
  • First Online:
New Discoveries on the β-Hydride Elimination

Part of the book series: Springer Theses ((Springer Theses))

Abstract

While palladium based complexes are the most common catalysts for the Heck reaction, efforts have been made to replace palladium with less expensive metals such as nickel or cobalt [1]. During the last decade increasing attention has been directed towards nickel catalysis.

Parts of the following chapter have been published in J. Am. Chem. Soc. 2012, 134, 443 and have been reprinted (adapted) with permission from J. Am. Chem. Soc. 2012, 134, 443. Copyright 2011 American Chemical Society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Affo W, Ohmiya H, Fujioka T, Ikeda Y, Nakamura T, Yorimitsu H, Oshima K, Imamura Y, Mizuta T, Miyoshi K (2006) J Am Chem Soc 128:8068

    Article  CAS  Google Scholar 

  2. Lohre C, Dröge T, Wang C, Glorius F (2011) Chem Eur J 17:6052

    Article  CAS  Google Scholar 

  3. Jana R, Pathak TP, Sigman MS (2011) Chem Rev 111:1417

    Article  CAS  Google Scholar 

  4. Takachi M, Kita Y, Tobisu M, Fukumoto Y, Chatani N (2010) Angew Chem Int Ed 49:8717

    Article  CAS  Google Scholar 

  5. Montgomery J (2004) Angew Chem Int Ed 43:3890

    Article  CAS  Google Scholar 

  6. Saya L, Bhargava G, Navarro MA, Gulías M, Lopéz F, Fernández I, Castedo L, Mascareñas JL (2010) Angew Chem Int Ed 49:9886

    Google Scholar 

  7. Koyama I, Kurahashi T, Matsubara S (2009) J Am Chem Soc 131:1350

    Article  CAS  Google Scholar 

  8. Yang C–M, Jeganmohan M, Parthasarathy K, Cheng C–H (2010) Org Lett 12:3610

    Google Scholar 

  9. Namitharan K, Pitchumani K (2010) Eur J Org Chem 411

    Google Scholar 

  10. Auvinet A–L, Harrity JPA (2011) Angew Chem Int Ed 50:2769

    Google Scholar 

  11. Morimoto M, Miura T, Murakami M (2010) J Am Chem Soc 132:54

    Article  Google Scholar 

  12. Molinaro C, Montgomery TF (2003) J Am Chem Soc 125:8076

    Article  CAS  Google Scholar 

  13. Li W, Chen N, Montgomery J (2010) Angew Chem Int Ed 49:8712

    Article  CAS  Google Scholar 

  14. Everson DA, Shrestha R, Weix DJ (2010) J Am Chem Soc 132:920

    Article  CAS  Google Scholar 

  15. Sergeev AG, Hartwig JF (2011) Science 332:439

    Article  CAS  Google Scholar 

  16. Guan B–T, Xiang S–K, Wang B–Q, Sun Z–P, Wang Y, Zhao K–Q, Shi Z–J (2008) J Am Chem Soc 130:3268

    Google Scholar 

  17. Yu D–G, Li B–J, Zheng S–F, Guan B–T, Wang B–Q, Shi Z–J (2010) Angew Chem Int Ed 49:4566

    Google Scholar 

  18. Shimasaki T, Tobisu M, Chatani N (2010) Angew Chem Int Ed 49:2929

    Article  CAS  Google Scholar 

  19. Quasdorf KW, Antoft-Finch A, Liu P, Silberstein AL, Komaromi A, Blackburn T, Ramgren SD, Houk KN, Snieckus V, Garg NK (2011) J Am Chem Soc 133:6352

    Article  CAS  Google Scholar 

  20. Rosen BM, Quasdorf KW, Wilson DA, Zhang N, Resmerita A-M, Garg NK, Percec V (2011) Chem Rev 111:1346

    Article  CAS  Google Scholar 

  21. Li B–J, Yu D–G, Sun C–L, Shi Z–J (2011) Chem Eur J 17:1728

    Google Scholar 

  22. Frisch AC, Beller M (2005) Angew Chem Int Ed 44:674

    Article  CAS  Google Scholar 

  23. Glorius F (2008) Angew Chem Int Ed 47:8347

    Article  CAS  Google Scholar 

  24. Weissermel K, Arpe H–J (1997) Industrial organic chemistry, 3rd edn. Wiley, Weinheim

    Google Scholar 

  25. Ng S–S, Ho C–Y, Jamison TF (2006) J Am Chem Soc 128:11513

    Google Scholar 

  26. Inamoto K, Kuroda J, Hiroya K, Noda Y, Watanabe M, Sakamoto T (2006) Organometallics 25:3095

    Article  CAS  Google Scholar 

  27. Inamoto K, Kuroda J, Danjo T, Sakamoto T (2005) Synlett 1624

    Google Scholar 

  28. Lin B–L, Liu L, Fu Y, Luo S–W, Chen Q, Guo Q–X (2004) Organometallics 23:2114

    Google Scholar 

  29. Matsubara R, Jamison TF (2010) J Am Chem Soc 132:6880

    Article  CAS  Google Scholar 

  30. Hansen AL, Skrydstrup T (2005) Org Lett 7:5585

    Article  CAS  Google Scholar 

  31. Birkholz (née Gensow) M–N, Freixa Z, van Leeuwen PWNM (2009) Chem Soc Rev 38:1099

    Google Scholar 

  32. Kwong FK, Lai CW, Chan KS (2001) J Am Chem Soc 123:8864

    Article  CAS  Google Scholar 

  33. Cho SH, Yoon J, Chang S (2011) J Am Chem Soc 133:5996

    Article  CAS  Google Scholar 

  34. Bertrand F, Basketter DA, Roberts DW, Lepoittevin J-P (1997) Chem Res Toxicol 10:335

    Article  CAS  Google Scholar 

  35. Arango V, Robledo S, Séon-Méniel B, Figadére B, Cardona W, Sáez J, Otálvaro F (2010) J Nat Prod 73:1012

    Article  CAS  Google Scholar 

  36. Palladium catalyzed double bond isomerization has been reported see ref [50]

    Google Scholar 

  37. It has been shown that ionic liquids in combination with high temperatures and prolonged reaction times are mandatory in the nickel catalyzed Heck coupling of aryl bromides and butyl vinyl ether. See Sun L, Pei W, Shen C (2006) J Chem Res 388. For palladium catalyzed Heck reaction of aryl bromides in ionic liquids with added halides. See ref [51]

    Google Scholar 

  38. Curley JJ, Kitiachvili KD, Waterman R, Hillhouse GL (2009) Organometallics 28:2568

    Article  CAS  Google Scholar 

  39. Olofsson K, Larhed M, Hallberg A (1998) J Org Chem 63:5076

    Article  CAS  Google Scholar 

  40. Hartwig JF (2010) Organotransition metal chemistry: from bonding to catalysis. University Science Books, Sausalito

    Google Scholar 

  41. Hartwig JF (2007) Inorg Chem 46:1936

    Article  CAS  Google Scholar 

  42. Lanci MP, Remy MS, Kaminsky W, Mayer JM, Sanford MS (2009) J Am Chem Soc 131:15618

    Article  CAS  Google Scholar 

  43. Furuya T, Benitez D, Tkatchouk E, Strom AE, Tang P, Goddard WA III, Ritter T (2010) J Am Chem Soc 132:3793

    Article  CAS  Google Scholar 

  44. Brown JM, Guiry PJ (1994) Inorg Chim Acta 220:249

    Article  CAS  Google Scholar 

  45. The DFT calculations were performed by the group of Professor Per-Ola Norrby

    Google Scholar 

  46. Ambrogio I, Fabrizi G, Cacchi S, Henriksen ST, Fristrup P, Tanner D, Norrby P-O (2008) Organometallics 27:3187

    Article  CAS  Google Scholar 

  47. Hills ID, Fu GC (2004) J Am Chem Soc 126:13178

    Article  CAS  Google Scholar 

  48. Other ways of analyzing free energy surfaces has been presented. See Shaik KS (2011) Acc Chem Res 44:101

    Google Scholar 

  49. Ruan J, Xiao J (2011) Acc Chem Res 44:614

    Article  CAS  Google Scholar 

  50. Gauthier D, Lindhardt AT, Olsen EPK, Overgaard J, Skrydstrup T (2010) J Am Chem Soc 132:7998

    Google Scholar 

  51. Ruan J, Xiao J (2011) Acc Chem Res 44:614

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Meyer Gøgsig .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gøgsig, T.M. (2012). Cationic Intermediates in the Ni(0)-Catalyzed Heck Reaction. In: New Discoveries on the β-Hydride Elimination. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32099-6_6

Download citation

Publish with us

Policies and ethics