Skip to main content

Intraday Foreign Exchange Rate Forecasting Using Sparse Grids

  • Conference paper
  • First Online:
Sparse Grids and Applications

Abstract

We present a machine learning approach using the sparse grid combination technique for the forecasting of intraday foreign exchange (fx) rates. The aim is to learn the impact of trading rules used by technical analysts just from the empirical behaviour of the market. To this end, the problem of analyzing a time series of transaction tick data is transformed by delay embedding into a D-dimensional regression problem using derived measurements from several different exchange rates. Then, a grid-based approach is used to discretize the resulting high-dimensional feature space. To cope with the curse of dimensionality we employ sparse grids in the form of the combination technique. Here, the problem is discretized and solved for a collection of conventional grids. The sparse grid solution is then obtained by linear combination of the solutions on these grids. We give the results of this approach to fx forecasting using real historical exchange data of the Euro, the US dollar, the Japanese Yen, the Swiss Franc and the British Pound from 2001 to 2005.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Observe that a change of 1. 0 − 4 in our target attribute is roughly the size of a pip (the smallest unit of the quoted price) for eur/usd.

  2. 2.

    Different back ticks might result in a better performance, but we restricted our experiments to equal back ticks for reasons of simplicity.

  3. 3.

    Note that a different order might result in a different performance.

  4. 4.

    Furthermore only relatively few trades take place with fma which makes this a strategy with a higher variance in the performance.

References

  1. D. J. E. Baestaens, W. M. van den Bergh, and H. Vaudrey. Market inefficiencies, technical trading and neural networks. In C. Dunis, editor, Forecasting Financial Markets, pages 245–260. Wiley, 1996.

    Google Scholar 

  2. W. Brock, J. Lakonishok, and B. LeBaron. Simple technical trading rules and the stochastic properties of stock returns. The Journal of Finance, 47(5):1731–1764, 1992.

    Article  Google Scholar 

  3. H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numerica, 13:147–269, 2004.

    Article  MathSciNet  Google Scholar 

  4. Y.-W. Cheung and C. Y.-P. Wong. Foreign exchange traders in Hong Kong, Tokyo, and Singapore: A survey study. In T. Bos and T. A. Fetherston, editors, Advances in Pacific Basin Financial Markets, volume 5, pages 111–134. JAI, 1999.

    Google Scholar 

  5. R. Curcio, C. Goodhart, D. Guillaume, and R. Payne. Do technical trading rules generate profits? Conclusions from the intra-day foreign exchange market. Int. J. Fin. Econ., 2(4):267–280, 1997.

    Article  Google Scholar 

  6. M. A. H. Dempster, T. W. Payne, Y. S. Romahi, and G. W. P. Thompson. Computational learning techniques for intraday FX trading using popular technical indicators. IEEE Trans. Neural Networks, 12(4):744–754, 2001.

    Article  Google Scholar 

  7. M. Engel. Time series analysis. Part III Essay, University of Cambridge, 1991.

    Google Scholar 

  8. T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support vector machines. Advances in Computational Mathematics, 13:1–50, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Garcke. Regression with the optimised combination technique. In W. Cohen and A. Moore, editors, Proceedings of the 23rd ICML ’06, pages 321–328, 2006.

    Google Scholar 

  10. J. Garcke. A dimension adaptive sparse grid combination technique for machine learning. In W. Read, J. W. Larson, and A. J. Roberts, editors, Proceedings of the 13th Biennial Computational Techniques and Applications Conference, CTAC-2006, volume 48 of ANZIAM J., pages C725–C740, 2007.

    Google Scholar 

  11. J. Garcke and M. Griebel. Classification with sparse grids using simplicial basis functions. Intelligent Data Analysis, 6(6):483–502, 2002.

    MATH  Google Scholar 

  12. J. Garcke, M. Griebel, and M. Thess. Data mining with sparse grids. Computing, 67(3):225–253, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Garcke and M. Hegland. Fitting multidimensional data using gradient penalties and the sparse grid combination technique. Computing, 84(1–2):1–25, April 2009.

    MathSciNet  MATH  Google Scholar 

  14. T. Gerstner and M. Griebel. Dimension–Adaptive Tensor–Product Quadrature. Computing, 71(1):65–87, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  15. F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural networks architectures. Neural Computation, 7:219–265, 1995.

    Article  Google Scholar 

  16. P. Grassberger and I. Procaccia. Characterization of strange attractors. Phys. Rev. Lett, 50:346–349, 1983.

    Article  MathSciNet  Google Scholar 

  17. M. Griebel, M. Schneider, and C. Zenger. A combination technique for the solution of sparse grid problems. In P. de Groen and R. Beauwens, editors, Iterative Methods in Linear Algebra, pages 263–281. IMACS, Elsevier, North Holland, 1992.

    Google Scholar 

  18. D. M. Guillaume, M. M. Dacorogna, R. R. Davé, U. A. Müller, R. B. Olsen, and O. V. Pictet. From the bird’s eye to the microscope: A survey of new stylized facts of the intra-daily foreign exchange markets. Finance Stochast., 1(2):95–129, 1997.

    Article  MATH  Google Scholar 

  19. M. Hegland, J. Garcke, and V. Challis. The combination technique and some generalisations. Linear Algebra and its Applications, 420(2–3):249–275, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Hegland, O. M. Nielsen, and Z. Shen. Multidimensional smoothing using hyperbolic interpolatory wavelets. Electronic Transactions on Numerical Analysis, 17:168–180, 2004.

    MathSciNet  MATH  Google Scholar 

  21. I. Horenko. Finite element approach to clustering of multidimensional time series. SIAM Journal on Scientific Computing, 32:62–83, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  22. K. Iwatsubo and Y. Kitamura. Intraday evidence of the informational efficiency of the yen/dollar exchange rate. Applied Financial Economics, 19(14):1103–1115, 2009.

    Article  Google Scholar 

  23. H. Kantz and T. Schreiber. Nonlinear time series analysis. Cambridge University Press, 1997.

    Google Scholar 

  24. K. Lien. Day Trading the Currency Market. Wiley, 2005.

    Google Scholar 

  25. Y.-H. Lui and D. Mole. The use of fundamental and technical analyses by foreign exchange dealers: Hong Kong evidence. J. Int. Money Finance, 17(3):535–545, 1998.

    Article  Google Scholar 

  26. A. L. M. Verleysen, E. de Bodt. Forecasting financial time series through intrinsic dimension estimation and non-linear data projection. In J. Mira and J. V. Sánchez-Andrés, editors, Engineering Applications of Bio-Inspired Artificial Neural Networks, Volume II, volume 1607 of Lecture Notes in Computer Science, pages 596–605. Springer, 1999.

    Google Scholar 

  27. C. J. Neely and P. A. Weller. Intraday technical trading in the foreign exchange market. J. Int. Money Finance, 22(2):223–237, 2003.

    Article  Google Scholar 

  28. C. Osler. Support for resistance: Technical analysis and intraday exchange rates. Economic Policy Review, 6(2):53–68, 2000.

    MathSciNet  Google Scholar 

  29. T. R. Reid. The United States of Europe, The New Superpower and the End of the American Supremacy. Penguin Books, 2004.

    Google Scholar 

  30. B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, 2002.

    Google Scholar 

  31. F. Takens. Detecting strange attractors in turbulence. In D. Rand and L.-S. Young, editors, Dynamical Systems and Turbulence, volume 898 of Lecture Notes in Mathematics, pages 366–381. Springer, 1981.

    Google Scholar 

  32. M. P. Taylor and H. Allen. The use of technical analysis in the foreign exchange market. J. Int. Money Finance, 11(3):304–314, 1992.

    Article  Google Scholar 

  33. A. N. Tikhonov and V. A. Arsenin. Solutions of ill-posed problems. W. H. Winston, Washington D.C., 1977.

    Google Scholar 

  34. G. Tsibouris and M. Zeidenberg. Testing the efficient markets hypothesis with gradient descent algorithms. In A.-P. Refenes, editor, Neural Networks in the Capital Markets, chapter 8, pages 127–136. Wiley, 1995.

    Google Scholar 

  35. G. Wahba. Spline models for observational data, volume 59 of Series in Applied Mathematics. SIAM, Philadelphia, 1990.

    Book  MATH  Google Scholar 

  36. C. Zenger. Sparse grids. In W. Hackbusch, editor, Parallel Algorithms for Partial Differential Equations, Proceedings of the Sixth GAMM-Seminar, Kiel, 1990, volume 31 of Notes on Num. Fluid Mech. Vieweg-Verlag, 1991.

    Google Scholar 

  37. H. G. Zimmermann, R. Neuneier, and R. Grothmann. Multi-agent modeling of multiple FX-markets by neural networks. IEEE Trans. Neural Networks, 12(4):735–743, 2001.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Bastian Bohn and Alexander Hullmann for their assistance with the numerical experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Garcke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Garcke, J., Gerstner, T., Griebel, M. (2012). Intraday Foreign Exchange Rate Forecasting Using Sparse Grids. In: Garcke, J., Griebel, M. (eds) Sparse Grids and Applications. Lecture Notes in Computational Science and Engineering, vol 88. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31703-3_4

Download citation

Publish with us

Policies and ethics