Skip to main content

Meiosis in Polyploid Plants

  • Chapter
  • First Online:
Polyploidy and Genome Evolution

Abstract

Meiosis is an obligate process during sexual reproduction, which involves the combination of parental genomes and the coordinated segregation of the recombined chromosomes to the gametes. Polyploidy has direct and fundamental consequences on meiosis, which are gradually and individually different between the extreme cases of auto- and allopolyploids. Multiple chromosome complements have a major impact, especially on chromosome pairing during pachytene and on the segregation of genotypes and phenotypes in progeny. At the same time, irregularities during meiosis are a major source of naturally occurring polyploidization events by the formation of unreduced gametes. Although individuals originating from nonhaploid gametes may suffer from reduced vigor and fecundity, their gametogenesis can produce many more chromosomal combinations than regular diploids, and thereby expose more diversity to natural selection. A more relaxed control of pairing and segregation in polyploids, possibly also with increased recombination rates, might be an important contribution to evolution and adaptation potential, especially under drastic or frequent changes in environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamowski ED, Pagliarini MS, Batista LAR (1998) Chromosome elimination in paspalum subciliatum (Notata group). Sex Plant Reprod 11(5):272–276

    Google Scholar 

  • Agashe B, Prasad CK, Siddiqi I (2002) Identification and analysis of DYAD: a gene required for meiotic chromosome organisation and female meiotic progression in Arabidopsis. Development 129(16):3935–3943

    PubMed  CAS  Google Scholar 

  • Albertin W, Marullo P, Aigle M, Bourgais A, Bely M, Dillmann C, De Vienne D, Sicard D (2009) Evidence for autotetraploidy associated with reproductive isolation in Saccharomyces cerevisiae: towards a new domesticated species. J Evol Biol 22(11):2157–2170

    PubMed  CAS  Google Scholar 

  • Anderson LK, Stack SM (2005) Recombination nodules in plants. Cytogenet Genome Res 109(1–3):198–204

    PubMed  CAS  Google Scholar 

  • Andru S, Pan YB, Thongthawee S, Burner DM, Kimbeng CA (2011) Genetic analysis of the sugarcane (Saccharum spp.) cultivar LCP 85-384’. I. Linkage mapping using AFLP, SSR, and TRAP markers. Theor Appl Genet 123(1):77–93

    Google Scholar 

  • Armstrong SJ, Franklin FCH, Jones GH (2003) A meiotic time-course for Arabidopsis thaliana. Sex Plant Reprod 16(3):141–149

    Google Scholar 

  • Asker S, Jerling L (1992) Apomixis in plants. CRC Press, Boca Raton

    Google Scholar 

  • Avivi L, Feldman M (1980) Arrangement of chromosomes in the interphase nucleus of plants. Hum Genet 55(3):281–295

    PubMed  CAS  Google Scholar 

  • Barth S, Melchinger AE, Devezi-Savula B, Lubberstedt T (2001) Influence of genetic background and heterozygosity on meiotic recombination in Arabidopsis thaliana. Genome 44(6):971–978

    PubMed  CAS  Google Scholar 

  • Bass HW, Marshall WF, Sedat JW, Agard DA, Cande WZ (1997) Telomeres cluster de novo before the initiation of synapsis: a three-dimensional spatial analysis of telomere positions before and during meiotic prophase. J Cell Biol 137(1):5–18

    PubMed  CAS  Google Scholar 

  • Baudat F, de Massy B (2007) Regulating double-stranded DNA break repair towards crossover or non-crossover during mammalian meiosis. Chromosome Res 15(5):565–577

    PubMed  CAS  Google Scholar 

  • Bayliss MW, Riley R (1972) Analysis of temperature-dependent asynapsis in Triticum aestivum. Genet Res 20(2):193

    Google Scholar 

  • Beaulieu JC, Lea JM (2006) Characterization and semiquantitative analysis of volatiles in seedless watermelon varieties using solid-phase microextraction. J Agric Food Chem 54(20):7789–7793

    PubMed  CAS  Google Scholar 

  • Bennett MD (1977) The time and duration of meiosis. Philos Trans R Soc Lond B Biol Sci 277(955):201–226

    PubMed  CAS  Google Scholar 

  • Bhatt AM, Canales C, Dickinson HG (2001) Plant meiosis: the means to 1 N. Trends Plant Sci 6(3):114–121

    PubMed  CAS  Google Scholar 

  • Borner GV, Kleckner N, Hunter N (2004) Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117(1):29–45

    PubMed  Google Scholar 

  • Brownfield L, Kohler C (2011) Unreduced gamete formation in plants: mechanisms and prospects. J Exp Bot 62(5):1659–1668

    PubMed  CAS  Google Scholar 

  • Brubaker CL, Paterson AH, Wendel JF (1999) Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome 42(2):184–203

    CAS  Google Scholar 

  • Burton TL, Husband BC (2001) Fecundity and offspring ploidy in matings among diploid, triploid and tetraploid Chamerion angustifolium (Onagraceae): consequences for tetraploid establishment. Heredity 87:573–582

    PubMed  CAS  Google Scholar 

  • Butruille DV, Boiteux LS (2000) Selection-mutation balance in polysomic tetraploids: impact of double reduction and gametophytic selection on the frequency and subchromosomal localization of deleterious mutations. Proc Nat Acad Sci USA 97(12):6608–6613

    PubMed  CAS  Google Scholar 

  • Cao DC, Osborn TC, Doerge RW (2004) Correct estimation of preferential chromosome pairing in autotetraploids. Genome Res 14(3):459–462

    PubMed  CAS  Google Scholar 

  • Carlton PM, Farruggio AP, Dernburg AF (2006) A link between meiotic prophase progression and crossover control. PLoS Genet 2:119–128

    CAS  Google Scholar 

  • Carman JG (1997) Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biol J Linn Soc 61(1):51–94

    Google Scholar 

  • Carvalho A, Delgado M, Baroa A, Frescatada M, Ribeiro E, Pikaard CS, Viegas W, Neves N (2010) Chromosome and DNA methylation dynamics during meiosis in the autotetraploid Arabidopsis arenosa. Sex Plant Reprod 23(1):29–37

    PubMed  CAS  Google Scholar 

  • Chan SWL (2010) Chromosome engineering: power tools for plant genetics. Trends Biotechnol 28(12):605–610

    PubMed  CAS  Google Scholar 

  • St Charles J, Hamilton ML, Petes TD (2010) Meiotic chromosome segregation in triploid strains of Saccharomyces cerevisiae. Genetics 186(2):537–550

    Google Scholar 

  • Cifuentes M, Grandont L, Moore G, Chevre AM, Jenczewski E (2010) Genetic regulation of meiosis in polyploid species: new insights into an old question. New Phytol 186(1):29–36

    PubMed  CAS  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6(11):836–846

    PubMed  CAS  Google Scholar 

  • Comai L, Tyagi AP, Lysak MA (2003) FISH analysis of meiosis in Arabidopsis allopolyploids. Chromosome Res 11(3):217–226

    PubMed  CAS  Google Scholar 

  • Corredor E, Lukaszewski AJ, Pachon P, Allen DC, Naranjo T (2007) Terminal regions of wheat chromosomes select their pairing partners in meiosis. Genetics 177(2):699–706

    PubMed  Google Scholar 

  • Cowan CR, Carlton PM, Cande WZ (2001) ‘The polar arrangement of telomeres in interphase and meiosis. Rabl organization and the bouquet. Plant Physiol 125(2):532–538

    PubMed  CAS  Google Scholar 

  • d’Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Mercier R (2009) Turning meiosis into mitosis. PLoS Biol 7(6):e1000124

    PubMed  Google Scholar 

  • D’Souza TG, Storhas M, Schulenburg H, Beukeboom LW, Michiels NK (2004) Occasional sex in an ‘asexual’ polyploid hermaphrodite. Proc Biol Sci 271(1543):1001–1007

    PubMed  Google Scholar 

  • Darlington CD (1929a) Chromosome behaviour and structural hybridity in the tradescantiae. J Genet 21(2):207–286

    Google Scholar 

  • Darlington CD (1929b) Polyploids and polyploidy. Nature 124:62–64

    Google Scholar 

  • Dawe RK (1998) Meiotic chromosome organization and segregation in plants. Annu Rev Plant Physiol Plant Mol Biol 49:371–395

    PubMed  CAS  Google Scholar 

  • De Muyt A, Mercier R, Mezard C, Grelon M (2009) Meiotic recombination and crossovers in plants. Genome Dyn 5:14–25

    PubMed  Google Scholar 

  • Desai A, Chee PW, Rong J, May OL, Paterson AH (2006) Chromosome structural changes in diploid and tetraploid A genomes of Gossypium. Genome 49(4):336–345

    PubMed  Google Scholar 

  • De Vicente MC, Tanksley SD (1991) Genome-wide reduction in recombination of backcross progeny derived from male versus female gametes in an interspecific cross of tomato. Theor Appl Genet 83(2):173–178

    Google Scholar 

  • Doerge RW, Craig BA (2000) Model selection for quantitative trait locus analysis in polyploids. Proc Nat Acad Sci USA 97(14):7951–7956

    PubMed  CAS  Google Scholar 

  • Dong F, Jiang J (1998) Non-Rabl patterns of centromere and telomere distribution in the interphase nuclei of plant cells. Chromosome Res 6(7):551–558

    PubMed  CAS  Google Scholar 

  • Dorcey E, Urbez C, Blazquez MA, Carbonell J, Perez-Amador MA (2009) Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. Plant J 58(2):318–332

    PubMed  CAS  Google Scholar 

  • Drouaud J, Camilleri C, Bourguignon PY, Canaguier A, Berard A, Vezon D, Giancola S, Brunel D, Colot V, Prum B et al (2007) Variation in crossing-over rates across chromosome 4 of Arabidopsis thaliana reveals the presence of meiotic recombination “hot spots”. Genome Res 16(1):106–114

    Google Scholar 

  • Drouaud J, Mercier R, Chelyshev L, Bérard A, Falque M, Martin O, Zanni V, Brunel D, Mézard C (2007) Sex-specific crossover distributions and variations in interference level along Arabidopsis thaliana chromosome 4. PLoS Genet 3(6):e106

    PubMed  Google Scholar 

  • Edlinger B, Schlogelhofer P (2011) Have a break: determinants of meiotic DNA double strand break (DSB) formation and processing in plants. J Exp Bot 62(5):1545–1563

    PubMed  CAS  Google Scholar 

  • Fisher RA (1947) The theory of linkage in polysomic inheritance. Philos Trans R Soc Lond B Biol Sci 233(594):55–87

    Google Scholar 

  • Francis KE, Lam SY, Harrison BD, Bey AL, Berchowitz LE, Copenhaver GP (2007) Pollen tetrad-based visual assay for meiotic recombination in Arabidopsis. Proc Nat Acad Sci USA 104(10):3913–3918

    PubMed  CAS  Google Scholar 

  • Gaeta RT, Pires JC (2010) Homologous recombination in allopolyploids: the polyploid ratchet. New Phytol 186(1):18–28

    PubMed  CAS  Google Scholar 

  • Griffiths S, Sharp R, Foote TN, Bertin I, Wanous M, Reader S, Colas I, Moore G (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439(7077):749–752

    PubMed  CAS  Google Scholar 

  • Gupta PK, Fedak G (1985) Genetic control of meiotic chromosome pairing in polyploids in the genus Hordeum. Can J Genet Cytol 27(5):515–530

    Google Scholar 

  • Gustaffson A (1946) Apomixis in higher plants. Lunds Universitets Arsskrift 42(2):1–370

    Google Scholar 

  • Hamant O, Ma H, Cande WZ (2006) Genetics of meiotic prophase I in plants. Annu Rev Plant Biol 57:267–302

    PubMed  CAS  Google Scholar 

  • Harper L, Golubovskaya I, Cande WZ (2004) A bouquet of chromosomes. J Cell Sci 117(Pt 18):4025–4032

    PubMed  CAS  Google Scholar 

  • Harrison CJ, Alvey E, Henderson IR (2010) Meiosis in flowering plants and other green organisms. J Exp Bot 61(11):2863–2875

    PubMed  CAS  Google Scholar 

  • Heslop-Harrison JS, Schwarzacher T (2007) Domestication, genomics and the future for banana. Ann Bot 100(5):1073–1084

    PubMed  CAS  Google Scholar 

  • Holliday R (1977) Recombination and meiosis. Philos Trans R Soc Lond B Biol Sci 277(955):359–370

    PubMed  CAS  Google Scholar 

  • Horandl E, Cosendai AC, Rodewald J (2011) Origin and distribution of autopolyploids via apomixis in the alpine species Ranunculus kuepferi (Ranunculaceae). Taxon 60(2):355–364

    Google Scholar 

  • Jannoo N, Grivet L, David J, D’Hont A, Glaszmann JC (2004) Differential chromosome pairing affinities at meiosis in polyploid sugarcane revealed by molecular markers. Heredity 93(5):460–467

    PubMed  CAS  Google Scholar 

  • Jenczewski E, Alix K (2004) From diploids to allopolyploids: the emergence of efficient pairing control genes in plants. Crit Rev Plant Sci 23(1):21–45

    CAS  Google Scholar 

  • Jenczewski E, Eber F, Grimaud A, Huet S, Lucas MO, Monod H, Chevre AM (2003) PrBn, a major gene controlling homologous pairing in oilseed rape (Brassica napus) haploids. Genetics 164(2):645–653

    PubMed  CAS  Google Scholar 

  • Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Yi, Liang H, Soltis PS et al (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473(7345):97–100

    PubMed  CAS  Google Scholar 

  • John B, Henderson SA (1962) Asynapsis and polyploidy in Schistocerca paranensis. Chromosoma 13(2):111–147

    Google Scholar 

  • Jones GH (1994) Meiosis in autopolyploid crepis-capillaris 3. Comparison of triploids and tetraploids: evidence for nonindependence of autonomous pairing sites. Heredity 73:215–219

    Google Scholar 

  • Jones GH, Vincent JE (1994) Meiosis in autopolyploid crepis capillaris 2. Autotetraploids. Genome 37(3):497–505

    PubMed  CAS  Google Scholar 

  • Kamiri M, Stift M, Srairi I, Costantino G, Moussadik AE, Hmyene A, Bakry F, Ollitrault P, Froelicher Y (2011) Evidence for non-disomic inheritance in a citrus interspecific tetraploid somatic hybrid between C. reticulata and C. limon using SSR markers and cytogenetic analysis. Plant Cell Rep 30(8):1415–1425

    PubMed  CAS  Google Scholar 

  • Kim S, Plagnol V, Hu TT, Toomajian C, Clark RM, Ossowski S, Ecker JR, Weigel D, Nordborg M (2007) Recombination and linkage disequilibrium in Arabidopsis thaliana. Nat Genet 39(9):1151–1155

    PubMed  CAS  Google Scholar 

  • Knight E, Greer E, Draeger T, Thole V, Reader S, Shaw P, Moore G (2010) Inducing chromosome pairing through premature condensation: analysis of wheat interspecific hybrids. Funct Integr Genomics 10(4):603–608

    PubMed  CAS  Google Scholar 

  • Koehler C, Mittelsten OS, Erilova A (2010) The impact of the triploid block on the origin and evolution of polyploid plants. Trends Genet 26(3):142–148

    CAS  Google Scholar 

  • Leflon M, Grandont L, Eber F, Huteau V, Coriton O, Chelysheva L, Jenczewski E, Chevre AM (2010) Crossovers get a boost in brassica allotriploid and allotetraploid hybrids. Plant Cell 22(7):2253–2264

    PubMed  CAS  Google Scholar 

  • Leitch AR, Leitch IJ (2008) Genomic plasticity and the diversity of polyploid plants. Science 320(5875):481–483

    PubMed  CAS  Google Scholar 

  • Li J, Das K, Fu G, Tong C, Li Y, Tobias C, Wu R (2010) Em algorithm for mapping quantitative trait Loci in multivalent tetraploids. Int J Plant Genomics 2010:216547

    PubMed  Google Scholar 

  • Li XC, Barringer BC, Barbash DA (2009) The pachytene checkpoint and its relationship to evolutionary patterns of polyploidization and hybrid sterility. Heredity 102(1):24–30

    PubMed  CAS  Google Scholar 

  • Lim KB, Shen TM, Barba-Gonzalez R, Ramanna MS, Van Tuyl JM (2004) Occurrence of SDR 2 N-gametes in Lilium hybrids. Breed Sci 54(1):13–18

    Google Scholar 

  • Lohmiller LD, De Muyt A, Howard B, Offenberg HH, Heyting C, Grelon M, Anderson LK (2008) Cytological analysis of MRE11 protein during early meiotic prophase I in Arabidopsis and tomato. Chromosoma 117(3):277–288

    PubMed  CAS  Google Scholar 

  • Loidl J (1989) Effects of elevated temperature on meiotic chromosome synapsis in Allium ursinum. Chromosoma 97(6):449–458

    Google Scholar 

  • Loidl J (1995) Meiotic chromosome pairing in triploid and tetraploid Saccharomyces cerevisiae. Genetics 139(4):1511–1520

    PubMed  CAS  Google Scholar 

  • Lukaszewski AJ, Kopecky D (2010) The Ph1 locus from wheat controls meiotic chromosome pairing in autotetraploid rye (Secale cereale L.). Cytogenet Genome Res 129(1–3):117–123

    PubMed  CAS  Google Scholar 

  • Luo ZW, Zhang RM, Kearsey MJ (2004) Theoretical basis for genetic linkage analysis in autotetraploid species. Proc Nat Acad Sci USA 101(18):7040–7045

    PubMed  CAS  Google Scholar 

  • Luo ZW, Zhang Z, Zhang RM, Pandey M, Gailing O, Hattemer HH, Finkeldey R (2006) Modeling population genetic data in autotetraploid species. Genetics 172(1):639–646

    PubMed  CAS  Google Scholar 

  • Ma CX, Casella G, Shen ZJ, Osborn TC, Wu RL (2002) A unified framework for mapping quantitative trait loci in bivalent tetraploids using single-dose restriction fragments: a case study from alfalfa. Genome Res 12(12):1974–1981

    PubMed  CAS  Google Scholar 

  • Madlung A, Tyagi AP, Watson B, Jiang HM, Kagochi T, Doerge RW, Martienssen R, Comai L (2005) Genomic changes in synthetic Arabidopsis polyploids. Plant J 41(2):221–230

    PubMed  CAS  Google Scholar 

  • Martinez-Perez E, Shaw P, Aragon-Alcaide L, Moore G (2003) Chromosomes form into seven groups in hexaploid and tetraploid wheat as a prelude to meiosis. Plant J 36(1):21–29

    PubMed  CAS  Google Scholar 

  • Martinez-Perez E, Shaw P, Moore G (2001) The Ph1 locus is needed to ensure specific somatic and meiotic centromere association. Nature 411(6834):204–207

    PubMed  CAS  Google Scholar 

  • Mason AS, Nelson MN, Yan G, Cowling WA (2011) Production of viable male unreduced gametes in Brassica interspecific hybrids is genotype specific and stimulated by cold temperatures. BMC Plant Biol 11:103

    Google Scholar 

  • Mather K (1936) Segregation and linkage in autotetraploids. J Genetics 32(2):287–314

    Google Scholar 

  • McKee BD (1996) The license to pair: identification of meiotic pairing sites in Drosophila. Chromosoma 105(3):135–141

    PubMed  CAS  Google Scholar 

  • McKim KS (2007) Meiotic pairing: a place to hook up. Curr Biol 17(5):R165–R168

    PubMed  CAS  Google Scholar 

  • Melamed-Bessudo C, Yehuda E, Stuitje AR, Levy AA (2005) A new seed-based assay for meiotic recombination in Arabidopsis thaliana. Plant J 43(3):458–466

    PubMed  CAS  Google Scholar 

  • Menezes CB, Maluf WR, Azevedo SM, Faria MV, Nascimento IR, Nogueira DW, Gomes LA, Bearzoti E (2005) Inheritance of parthenocarpy in summer squash (Cucurbita pepo L.). Genet Mol Res 4(1):39–46

    PubMed  Google Scholar 

  • Mercier R, Grelon M (2008) Meiosis in plants: ten years of gene discovery. Cytogenet Genome Res 120(3–4):281–290

    PubMed  CAS  Google Scholar 

  • Mercier R, Vezon D, Bullier E, Motamayor JC, Sellier A, Lefevre F, Pelletier G, Horlow C (2001) SWITCH1 (SWI1): a novel protein required for the establishment of sister chromatid cohesion and for bivalent formation at meiosis. Genes Dev 15(14):1859–1871

    PubMed  CAS  Google Scholar 

  • Mestiri I, Chague V, Tanguy AM, Huneau C, Huteau V, Belcram H, Coriton O, Chalhoub B, Jahier J (2010) Newly synthesized wheat allohexaploids display progenitor-dependent meiotic stability and aneuploidy but structural genomic additivity. New Phytol 186(1):86–101

    PubMed  CAS  Google Scholar 

  • Mezard C (2006) Meiotic recombination hotspots in plants. Biochem Soc Trans 34:531–534

    PubMed  CAS  Google Scholar 

  • Mezard C, Vignard J, Drouaud J, Mercier R (2007) The road to crossovers: plants have their say. Trends Genet 23(2):91–99

    PubMed  CAS  Google Scholar 

  • Moore G, Shaw P (2009) Improving the chances of finding the right partner. Curr Opin Genet Dev 19(2):99–104

    PubMed  CAS  Google Scholar 

  • Morrison JW, Rajhathy T (1960) Frequency of quadrivalents in autotetraploid plants. Nature 187(4736):528–530

    PubMed  CAS  Google Scholar 

  • Mursalimov SR, Deineko EV (2011) An ultrastructural study of cytomixis in tobacco pollen mother cells. Protoplasma 248(4):717–724

    Google Scholar 

  • Naranjo T, Corredor E (2004) Clustering of centromeres precedes bivalent chromosome pairing of polyploid wheats. Trends Plant Sci 9(5):214–217

    PubMed  CAS  Google Scholar 

  • Nelson MN, Nixon J, Lydiate DJ (2005) Genome-wide analysis of the frequency and distribution of crossovers at male and female meiosis in Sinapis alba L. (white mustard). Theor Appl Genet 111(1):31–43

    PubMed  CAS  Google Scholar 

  • Nicolas SD, Leflon M, Liu Z, Eber F, Chelysheva L, Coriton O, Chevre AM, Jenczewski E (2008) Chromosome ‘speed dating’ during meiosis of polyploid Brassica hybrids and haploids. Cytogenet Genome Res 120(3–4):331–338

    PubMed  CAS  Google Scholar 

  • Nicolas SD, Leflon M, Monod H, Eber F, Coriton O, Huteau V, Chevre AM, Jenczewski E (2009) Genetic regulation of meiotic cross-overs between related genomes in Brassica napus haploids and hybrids. Plant Cell 21(2):373–385

    PubMed  CAS  Google Scholar 

  • Nogler GA (1984) Gametophytic apomixis. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin

    Google Scholar 

  • Ortiz R (1997) Occurrence and inheritance of 2n pollen in Musa. Ann Bot 79(4):449–453

    Google Scholar 

  • Osman K, Higgins JD, Sanchez-Moran E, Armstrong SJ, Franklin F, Chris H (2011) Pathways to meiotic recombination in Arabidopsis thaliana. New Phytol 190(3):523–544

    PubMed  CAS  Google Scholar 

  • Ottaviano E, Sari Gorla M, Mulcahy DL (1990) Pollen selection: efficiency and monitoring. In: Ogita ZI, Markert CL (eds) Isozymes: structure, function, and use in biology and medicine. Wiley-Liss, New York, pp 575–588

    Google Scholar 

  • Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131(3):452–462

    PubMed  CAS  Google Scholar 

  • Ozkan H, Feldman M (2009) Rapid cytological diploidization in newly formed allopolyploids of the wheat (Aegilops-Triticum) group. Genome 52(11):926–934

    PubMed  CAS  Google Scholar 

  • Pagliarini MS (2000) Meiotic behavior of economically important plant species: the relationship between fertility and male sterility. Genet Mol Biol 23(4):997–1002

    Google Scholar 

  • Pandolfini T (2009) Seedless fruit production by hormonal regulation of fruit set. Nutrients 1(2):168–177

    PubMed  CAS  Google Scholar 

  • Parisod C, Holderegger R, Brochmann C (2010) Evolutionary consequences of autopolyploidy. New Phytol 186(1):5–17

    PubMed  CAS  Google Scholar 

  • Pawlowski WP, Cande WZ (2005) Coordinating the events of the meiotic prophase. Trends Cell Biol 15(12):674–681

    PubMed  CAS  Google Scholar 

  • Pawlowski WP (2010) Chromosome organization and dynamics in plants. Curr Opin Plant Biol 13(6):640–645

    PubMed  CAS  Google Scholar 

  • Pecinka A, Fang W, Rehmsmeier M, Levy Avraham A, Mittelsten Scheid O (2011) Polyploidization increases meiotic recombination frequency in Arabidopsis. BMC Biol 9:24

    Google Scholar 

  • Pecrix Y, Rallo G, Folzer H, Cigna M, Gudin S, Le Bris M (2011) Polyploidization mechanisms: temperature environment can induce diploid gamete formation in Rosa sp. J Exp Bot 62(10):3587–3597

    PubMed  CAS  Google Scholar 

  • Peloquin SJ, Boiteux LS, Simon PW, Jansky SH (2008) A chromosome-specific estimate of transmission of heterozygosity by 2n gametes in potato. J Hered 99(2):177–181

    PubMed  CAS  Google Scholar 

  • Ramsey J (2007) Unreduced gametes and neopolyploids in natural populations of Achillea borealis (Asteraceae). Heredity 98(3):143–150

    PubMed  CAS  Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:467–501

    Google Scholar 

  • Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33:589–639

    Google Scholar 

  • Ravi M, Marimuthu MP, Siddiqi I (2008) Gamete formation without meiosis in Arabidopsis. Nature 451(7182):1121–1124

    PubMed  CAS  Google Scholar 

  • Ricci GCL, Pagliarini MS, Valle CB (2010) Genome elimination during microsporogenesis in two pentaploid accessions of Brachiaria decumbens (Poaceae). Genet Mol Res 9(4):2364–2371

    PubMed  CAS  Google Scholar 

  • Ridout MS, Bell JA, Simpson DW (2001) Analysis of segregation data from selfed progeny of allopolyploids. Heredity 87:537–543

    PubMed  CAS  Google Scholar 

  • Riley R, Chapman V (1958) Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182(4637):713–715

    Google Scholar 

  • Rose AM, Baillie DL (1979) Effect of temperature and parental age on recombination and nondisjunction in Caenorhanditis elegans. Genetics 92(2):409–418

    PubMed  CAS  Google Scholar 

  • Sakuno T, Watanabe Y (2009) Studies of meiosis disclose distinct roles of cohesion in the core centromere and pericentromeric regions. Chromosome Res 17(2):239–249

    PubMed  CAS  Google Scholar 

  • Sanchez-Moran E, Armstrong SJ, Santos JL, Franklin FCH, Jones GH (2002) Variation in chiasma frequency among eight accessions of Arabidopsis thaliana. Genetics 162(3):1415–1422

    PubMed  CAS  Google Scholar 

  • Sanchez-Moran E, Osman K, Higgins JD, Pradillo M, Cunado N, Jones GH, Franklin FCH (2008) ASY1 coordinates early events in the plant meiotic recombination pathway. Cytogenet Genome Res 120(3–4):302–312

    PubMed  CAS  Google Scholar 

  • Santos JL, Alfaro D, Sanchez-Moran E, Armstrong SJ, Franklin FC, Jones GH (2003) Partial diploidization of meiosis in autotetraploid Arabidopsis thaliana. Genetics 165(3):1533–1540

    PubMed  CAS  Google Scholar 

  • Scherthan H (2007) Telomere attachment and clustering during meiosis. Cell Mol Life Sci 64(2):117–124

    PubMed  CAS  Google Scholar 

  • Schoen I, Martens K (1998) DNA repair in ancient asexuals: a new solution to an old problem? J Nat Hist 32:943–948

    Google Scholar 

  • Schubert I, Shaw P (2011) Organization and dynamics of plant interphase chromosomes. Trends Plant Sci 16(5):273–281

    PubMed  CAS  Google Scholar 

  • Sharbel TF, Voigt ML, Corral JM, Galla G, Kumlehn J, Klukas C, Schreiber F, Vogel H, Rotter B (2010) Apomictic and sexual ovules of Boechera display heterochronic global gene expression patterns. Plant Cell 22(3):655–671

    PubMed  CAS  Google Scholar 

  • Sheehan MJ, Pawlowski WP (2009) Live imaging of rapid chromosome movements in meiotic prophase I in maize. Proc Natl Acad Sci USA 106(49):20989–20994

    PubMed  CAS  Google Scholar 

  • Simioni C, do Valle CB (2011) Meiotic analysis in induced tetraploids of Brachiaria decumbens Stapf. Crop Breed Appl Biotech 11(1):43–49

    Google Scholar 

  • Singhal VK, Kumar P (2008) Cytomixis during microsporogenesis in the diploid and tetraploid cytotypes of Withania somnifera (L.) Dunal, 1852 (Solanaceae). Comp Cytogenet 2(1):85–92

    Google Scholar 

  • Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14(9):348–352

    PubMed  Google Scholar 

  • Spillane C, Curtis MD, Grossniklaus U (2004) Apomixis technology development-virgin births in farmers fields? Nat Biotechnol 22(6):687–691

    PubMed  CAS  Google Scholar 

  • Stack SM, Anderson LK (2002) Crossing over as assessed by late recombination nodules is related to the pattern of synapsis and the distribution of early recombination nodules in maize. Chromosome Res 10(4):329–345

    PubMed  CAS  Google Scholar 

  • Stift M, Reeve R, van Tienderen PH (2010) Inheritance in tetraploid yeast revisited: segregation patterns and statistical power under different inheritance models. J Evol Biol 23(7):1570–1578

    PubMed  CAS  Google Scholar 

  • Stift Marc, Berenos C, Kuperus P, van Tienderen PH (2008) Segregation models for disomic, tetrasomic and intermediate inheritance in tetraploids: a general procedure applied to Rorippa (Yellow cress) microsatellite data. Genetics 179(4):2113–2123

    PubMed  Google Scholar 

  • Sun X, Zhang Y, Yang S, Chen JQ, Hohn B, Tian D (2008) Insertion DNA promotes ectopic recombination during meiosis in Arabidopsis. Mol Biol Evol 25(10):2079–2083

    PubMed  CAS  Google Scholar 

  • Sundstrom G, Larsson TA, Larhammar D (2008) Phylogenetic and chromosomal analyses of multiple gene families syntenic with vertebrate Hox clusters. BMC Evol Biol 8:254

    PubMed  Google Scholar 

  • Sybenga J (1996) Chromosome pairing affinity and quadrivalent formation in polyploids: do segmental allopolyploids exist? Genome 39(6):1176–1184

    PubMed  CAS  Google Scholar 

  • Szadkowski E, Eber F, Huteau V, Lode M, Coriton O, Jenczewski E, Chevre AM (2011) Polyploid formation pathways have an impact on genetic rearrangements in resynthesized Brassica napus. New Phytol 191(3):884–894

    PubMed  CAS  Google Scholar 

  • Szadkowski E, Eber F, Huteau V, Lode M, Huneau C, Belcram H, Coriton O, Manzanares-Dauleux MJ, Delourme R, King GJ et al (2010) The first meiosis of resynthesized Brassica napus, a genome blender. New Phytol 186(1):102–112

    PubMed  CAS  Google Scholar 

  • Trelles-Sticken E, Loidl J, Scherthan H (2003) Increased ploidy and KAR3 and SIR3 disruption alter the dynamics of meiotic chromosomes and telomeres. J Cell Sci 116(12):2431–2442

    PubMed  CAS  Google Scholar 

  • van Veen JE, Hawley RS (2003) Meiosis: when even two is a crowd. Curr Biol 13(21):R831–R833

    PubMed  Google Scholar 

  • Vizir IY, Korol AB (1990) Sex difference in recombination frequency in Arabidopsis. Heredity 65(3):379–383

    Google Scholar 

  • von Wettstein D, Rasmussen SW, Holm PB (1984) The synaptonemal complex in genetic segregation. Annu Rev Genet 18:331–413

    Google Scholar 

  • Wang Y, Jha AK, Chen R, Doonan JH, Yang M (2010) Polyploidy-associated genomic instability in Arabidopsis thaliana. Genesis 48(4):254–263

    PubMed  CAS  Google Scholar 

  • Watanabe K (1981) Studies on the control of diploid-like meiosis in polyploid taxa of Chrysanthemim japonese. Cytologia 46(3):459–498

    Google Scholar 

  • Weiss H, Maluszynska J (2000) Chromosomal rearrangement in autotetraploid plants of Arabidopsis thaliana. Hereditas 133(3):255–261

    PubMed  CAS  Google Scholar 

  • Wijnker E, de Jong H (2008) Managing meiotic recombination in plant breeding. Trends Plant Sci 13(12):640–646

    PubMed  CAS  Google Scholar 

  • Wu RL, Gallo-Meagher M, Littell RC, Zeng ZB (2001a) A general polyploid model for analyzing gene segregation in outcrossing tetraploid species. Genetics 159(2):869–882

    PubMed  CAS  Google Scholar 

  • Wu SS, Wu RL, Ma CX, Zeng ZB, Yang MC, Casella G (2001b) A multivalent pairing model of linkage analysis in autotetraploids. Genetics 159(3):1339–1350

    PubMed  CAS  Google Scholar 

  • Youds JL, Boulton SJ (2011) The choice in meiosis: defining the factors that influence crossover or non-crossover formation. J Cell Sci 124(Pt 4):501–513

    PubMed  CAS  Google Scholar 

  • Yousafzai FK, Al-Kaff N, Moore G (2010) The molecular features of chromosome pairing at meiosis: the polyploid challenge using wheat as a reference. Funct Integr Genomics 10(2):147–156

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ortrun Mittelsten Scheid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zielinski, ML., Mittelsten Scheid, O. (2012). Meiosis in Polyploid Plants. In: Soltis, P., Soltis, D. (eds) Polyploidy and Genome Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31442-1_3

Download citation

Publish with us

Policies and ethics